Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides

A metallic slot waveguide, with a dielectric strip embedded within, is investigated for the purpose of enhancing the optics-to-THz conversion efficiency using the difference-frequency generation (DFG) process. To describe the frequency conversion process in such lossy waveguides, a fully-vectorial coupled-mode theory is developed. Using the coupled-mode theory, we outline the basic theoretical requirements for efficient frequency conversion, which include the needs to achieve large coupling coefficients, phase matching, and low propagation loss for both the optical and THz waves. Following these requirements, a metallic waveguide is designed by considering the trade-off between modal confinement and propagation loss. Our numerical calculation shows that the conversion efficiency in these waveguide structures can be more than one order of magnitude larger than what has been achieved using dielectric waveguides. Based on the distinct impact of the slot width on the optical and THz modal dispersion, we propose a two-step method to realize the phase matching for general pump wavelengths.

[1]  Konstantin L. Vodopyanov,et al.  Optical THz‐wave generation with periodically‐inverted GaAs , 2008 .

[2]  Martin M. Fejer,et al.  Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared , 2007 .

[3]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[4]  Yujie J. Ding,et al.  Efficient terahertz generation from two collinearly propagating CO2 laser pulses , 2007 .

[5]  Martin M. Fejer,et al.  Terahertz-wave generation in quasi-phase-matched GaAs , 2006 .

[6]  Ely E. Bell,et al.  Measurement of the optical constants of crystal quartz in the far infrared with the asymmetric Fourier-transform method , 1967 .

[7]  S. Barbieri,et al.  Terahertz transfer onto a telecom optical carrier , 2007, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[8]  Y Takushima,et al.  Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration. , 2007, Optics express.

[9]  P. Coleman,et al.  Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides , 1974 .

[10]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[11]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[12]  Wei Shi,et al.  Designs of terahertz waveguides for efficient parametric terahertz generation , 2003 .

[13]  A C Chiang,et al.  Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies. , 2005, Optics letters.

[14]  G. R. Hadley,et al.  Optical Waveguide Theory and Numerical Modelling , 2004 .

[15]  Ajay Nahata,et al.  Broadband generation of terahertz radiation in a waveguide. , 2004, Optics letters.

[16]  Shanhui Fan,et al.  Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides. , 2009, Optics express.

[17]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[18]  K. Vodopyanov,et al.  Optical terahertz wave generation in a planar GaAs waveguide. , 2008, Optics letters.

[19]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[20]  Leon McCaughan,et al.  Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes. , 2008, Optics express.

[21]  M. Levenson The principles of nonlinear optics , 1985, IEEE Journal of Quantum Electronics.

[22]  Carlo Sirtori,et al.  Nonlinear phase matching in THz semiconductor waveguides , 2004 .

[23]  Shanhui Fan,et al.  Air‐bridge microcavities , 1995 .

[24]  Thomas E Darcie,et al.  Design of a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs. , 2008, Optics express.