The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion

Abstract The inhibitory role of fly ash (FA) on alkali–silica reaction (ASR) expansion is drastically reduced at the pessimum proportion relative to its role at full proportion. The main contribution of FA to inhibiting ASR expansion is to reduce the alkalinity of the pore solution and it is dependent on the thermodynamic equilibrium between the pore solution and the calcium-silicate-hydrate (C-S-H) gel. C-S-H gel with low Ca/Si ratio can bind a large amount of alkalis. However, when the concentration is higher than the threshold concentration for reaction, C-S-H gel plays a role in buffering the alkali concentration in the pore solution by supplying alkali. Thus, the inhibitory role of FA on ASR expansion decreases at the pessimum proportion because the aggregate can react with alkali even at low alkali concentrations. Therefore, replacing cement with a larger amount of fly ash is essential to reaching the threshold for reaction.

[1]  Jan Olek,et al.  Alkali–silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system , 2015 .

[2]  Stéphane Poyet Étude de la dégradation des ouvrages en béton atteints par la réaction alcali-silice : approche expérimentale et modélisation numérique multi-échelles des dégradations dans un environnement hydro-chemo-mécanique variable , 2003 .

[3]  K. Scrivener,et al.  Alkali fixation of C-S-H in blended cement pastes and its relation to alkali silica reaction , 2012 .

[4]  Etienne Grimal,et al.  Creep, Shrinkage, and Anisotropic Damage in Alkali-Aggregate Reaction Swelling Mechanism-Part I: A Constitutive Model , 2008 .

[5]  Alain Sellier,et al.  Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion , 2009 .

[6]  F. Glasser,et al.  Alkali binding in cement pastes: Part I. The C-S-H phase , 1999 .

[7]  Michael D.A. Thomas,et al.  Alkali-silica reaction (ASR)-performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion , 2013 .

[8]  Alain Sellier,et al.  Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution , 2007 .

[9]  Michael D. A. Thomas,et al.  The effect of metakaolin on alkali-silica reaction in concrete , 2000 .

[10]  Karen Scrivener,et al.  Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .

[11]  Michael D.A. Thomas,et al.  The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction , 2000 .

[12]  Marc-André Bérubé,et al.  Alkali mass balance during the accelerated concrete prism test for alkali–aggregate reactivity , 2003 .

[13]  Mitsunori Kawamura,et al.  ASR gel composition and expansive pressure in mortars under restraint , 2004 .

[14]  Stéphane Multon Evaluation experimentale et theorique des effets mecaniques de l'alcali-reaction sur des structures modeles , 2004 .

[15]  Y. Kawabata,et al.  Evaluation of Alkalinity of Pore Solution Based on the Phase Composition of Cement Hydrates with Supplementary Cementitious Materials and its Relation to Suppressing ASR Expansion , 2015 .

[16]  Karen L. Scrivener,et al.  The influence of aluminium on the dissolution of amorphous silica and its relation to alkali silica reaction , 2012 .

[17]  G. Sposito,et al.  The alkali-silica reaction, part I: Use of the double-layer theory to explain the behavior of reaction-product gels , 1997 .

[18]  Fatih Bektas,et al.  ALKALI REACTIVITY OF MORTARS CONTAINING CHERT AND INCORPORATING MODERATE-CALCIUM FLY ASH , 2004 .

[19]  Alain Sellier,et al.  Alkali-silica reaction (ASR) expansion: Pessimum effect versus scale effect , 2013 .

[20]  Eric R. Giannini,et al.  Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps , 2015 .

[21]  T. Uomoto,et al.  Analytical Study Concerning Prediction of Concrete Expansion Due to Alkali-Silica Reaction , 1994, "SP-145: Durability of Concrete -- Proceedings Third CANMET - ACI International Conference, Nice, France 1994".

[22]  Alain Ehrlacher,et al.  Microporomechanics study of anisotropy of ASR under loading , 2014 .

[23]  C. Dunant,et al.  Physically based models to study the alkali–silica reaction , 2016 .

[24]  T. Katayama The So-called Alkali-carbonate Reaction (ACR): Its Mineralogical and Geochemical Details, With Special Reference to ASR , 2010 .

[25]  Michael D.A. Thomas,et al.  The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes , 1999 .

[26]  Karen L. Scrivener,et al.  Influence of visco-elasticity on the stress development induced by alkali–silica reaction , 2015 .

[27]  Alain Sellier,et al.  Effects of aggregate size and alkali content on ASR expansion , 2008 .

[28]  Catherine Larive,et al.  Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'Alcali-réaction et de ses effets mécaniques , 1998 .

[29]  J. L. Rosenberger,et al.  Composition–rheology relationships in alkali–silica reaction gels and the impact on the gel's deleterious behavior , 2016 .

[30]  Michael D. A. Thomas,et al.  The effect of supplementary cementing materials on alkali-silica reaction: A review , 2011 .

[31]  D. W. Hobbs,et al.  Alkali-silica reaction in concrete , 1988 .

[32]  Michael D.A. Thomas,et al.  Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete , 2002 .

[33]  M. D. A. Thomas,et al.  EFFECT OF SLAG ON EXPANSION DUE TO ALKALI-AGGREGATE REACTION IN CONCRETE , 1998 .

[34]  T. Ichikawa,et al.  Alkali–silica Reaction, Pessimum Effects and Pozzolanic Effect , 2009 .

[35]  Gianluca Cusatis,et al.  Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures , 2013 .