Parameter identification in fractional differential equations

This article investigates the fractional derivative order identification, the coefficient identification, and the source identification in the fractional diffusion problems. If 1 < α < 2, we prove the unique determination of the fractional derivative order and the diffusion coefficient p(x) by ∫0tu(0,s)ds,0<t<T for one-dimensional fractional diffusion-wave equations. Besides, if 0 < α < 1, we show the unique determination of the source term f(x,y) by U(0,0,t), 0 < t < T for two-dimensional fractional diffusion equations. Here, α denotes the fractional derivative order over t.

[1]  D. Murio,et al.  Source terms identification for time fractional diffusion equation , 2008 .

[2]  A generalization of Duhamel’s principle for differential equations of fractional order , 2007 .

[3]  Masahiro Yamamoto,et al.  Overview to mathematical analysis for fractional diffusion equations - new mathematical aspects motivated by industrial collaboration , 2010 .

[4]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[5]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[6]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[7]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[8]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[9]  Brian Berkowitz,et al.  Anomalous transport in laboratory‐scale, heterogeneous porous media , 2000 .

[10]  Remarks on sub-fractional Bessel processes , 2011 .

[11]  Masahiro Yamamoto,et al.  Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .

[12]  Kharkov,et al.  Fractional kinetics for relaxation and superdiffusion in a magnetic field , 2002 .

[13]  Masahiro Yamamoto,et al.  A backward problem for the time-fractional diffusion equation , 2010 .

[14]  Vu Kim Tuan,et al.  Inverse problem for fractional diffusion equation , 2011 .

[15]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .