A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER

This is the second of two papers reporting results from a program to determine the Hubble constant to ∼5% precision from a refurbished distance ladder based on extensive use of differential measurements. Here we report observations of 240 Cepheid variables obtained with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Camera 2 through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the “maser galaxy” NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities, thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. In addition, the NICMOS measurements reduce the effects of differential extinction in the host galaxies by a factor of ∼5 over past optical data. Combined with a greatly expanded set of 240 SNe Ia at z < 0.1 which define their magnitude–redshift relation, we find H0 = 74.2 ± 3.6 km s−1 Mpc−1, a 4.8% uncertainty including both statistical and systematic errors. To independently test the maser calibration, we use 10 individual parallax measurements of Galactic Cepheids obtained with the HST fine guidance sensor and find similar results. We show that the factor of 2.2 improvement in the precision of H0 is a significant aid to the determination of the equation-of-state parameter of dark energy, w = P/(ρc2). Combined with the Wilkinson Microwave Anisotropy Probe five-year measurement of ΩMh2, we find w = −1.12 ± 0.12 independent of any information from high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-redshift SNe Ia and BAO. The constraints on w(z) now including high-redshift SNe Ia and BAO are consistent with a cosmological constant and are improved by a factor of 3 due to the refinement in H0 alone. We show that future improvements in the measurement of H0 are likely and should further contribute to multi-technique studies of dark energy.

[1]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[2]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[3]  J. Prieto,et al.  USING ULTRA LONG PERIOD CEPHEIDS TO EXTEND THE COSMIC DISTANCE LADDER TO 100 Mpc AND BEYOND , 2008, 0807.4933.

[4]  James J. Condon,et al.  Frontiers of Astrophysics: A Celebration of NRAO's 50th Anniversary , 2008 .

[5]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[6]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[7]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[8]  Scott T. Sullivan,et al.  Beyond two dark energy parameters. , 2007, Physical review letters.

[9]  J. M. Moran,et al.  Toward a New Geometric Distance to the Active Galaxy NGC 4258. II. Centripetal Accelerations and Investigation of Spiral Structure , 2007, 0709.0925.

[10]  D. Holz,et al.  Lensing and Supernovae: Quantifying the Bias on the Dark Energy Equation of State , 2007, 0710.4143.

[11]  D. Bersier,et al.  A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.

[12]  D. Wiltshire Exact solution to the averaging problem in cosmology. , 2007, Physical review letters.

[13]  Scott T. Sullivan,et al.  Narrowing constraints with type Ia supernovae: converging on a cosmological constant , 2007, 0706.3730.

[14]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[15]  S. Shandera,et al.  Preprint typeset in JHEP style- HYPER VERSION Comparing Brane Inflation to WMAP , 2007 .

[16]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[17]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[18]  W. Freedman,et al.  Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2006, astro-ph/0612465.

[19]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[20]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[21]  L. Macri,et al.  A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant , 2006, astro-ph/0608211.

[22]  A. Saha,et al.  The Hubble Constant: A Summary of the Hubble Space Telescope Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids , 2006, astro-ph/0603647.

[23]  A. Cooray,et al.  Large-scale bulk motions complicate the hubble diagram , 2006, astro-ph/0601377.

[24]  L. Hui,et al.  Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.

[25]  M. Reid,et al.  Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA , 2005 .

[26]  Warren R. Brown,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.

[27]  T. Lauer,et al.  Observing Dark Energy , 2005 .

[28]  P. Astier,et al.  SALT : a spectral adaptive light curve template for type Ia supernovae , 2005, astro-ph/0506583.

[29]  M. Marconi,et al.  Cepheid Pulsation Models at Varying Metallicity and ΔY/ΔZ , 2005, astro-ph/0506207.

[30]  W. Gieren,et al.  Mean JHK Magnitudes of Fundamental‐Mode Cepheids from Single‐Epoch Observations , 2005, astro-ph/0503598.

[31]  A. Filippenko,et al.  Type Ia Supernovae and Cosmology , 2004, astro-ph/0410609.

[32]  D. Huterer,et al.  Uncorrelated estimates of dark energy evolution , 2004, astro-ph/0404062.

[33]  Harry L. Shipman,et al.  White Dwarfs: Cosmological and Galactic Probes , 2005 .

[34]  A. Riess,et al.  Cepheid Calibrations from the Hubble Space Telescope of the Luminosity of Two Recent Type Ia Supernovae and a Redetermination of the Hubble Constant , 2004, astro-ph/0503159.

[35]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[36]  R. Miquel,et al.  Effects of systematic uncertainties on the supernova determination of cosmological parameters , 2003, astro-ph/0304509.

[37]  M. Visser Jerk, snap, and the cosmological equation of state , 2003, gr-qc/0309109.

[38]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[39]  Nial R. Tanvir,et al.  The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em , 2003, astro-ph/0305259.

[40]  E. Guinan,et al.  Fundamental Properties and Distances of Large Magellanic Cloud Eclipsing Binaries. IV. HV 5936 , 2003, astro-ph/0301296.

[41]  Eric V. Linder,et al.  Importance of supernovae at z > 1.5 to probe dark energy , 2002, astro-ph/0208138.

[42]  D. Huterer,et al.  Parametrization of dark-energy properties: a principal-component approach. , 2002, Physical review letters.

[43]  The Cepheid Period-Luminosity Relation in the Large Magellanic Cloud , 2002 .

[44]  B. Gibson,et al.  The distance to Supernova 1998aq in NGC 3982 , 2001, astro-ph/0110062.

[45]  F. D. Macchetto,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. XI. SN 1998aq in NGC 3982 , 2001, astro-ph/0107391.

[46]  S. E. Persson,et al.  NICMOS Observations of Extragalactic Cepheids. I. Photometry Database and a Test of the Standard Extinction Law , 2001, astro-ph/0102125.

[47]  A. Saha,et al.  Photometric Recovery of Crowded Stellar Fields Observed with HST/WFPC2 and the Effects of Confusion Noise on the Extragalactic Distance Scale , 1999, astro-ph/9911193.

[48]  I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog , 1999 .

[49]  B. Gibson,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXV. A Recalibration of Cepheid Distances to Type Ia Supernovae and the Value of the Hubble Constant , 1999, astro-ph/9908149.

[50]  R. Schommer,et al.  The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae , 1999, astro-ph/9907052.

[51]  J. M. Moran,et al.  A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk , 1999, Nature.

[52]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[53]  K. Long,et al.  Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant , 1998, astro-ph/9811205.

[54]  I. Zehavi,et al.  A Local Hubble Bubble from Type Ia Supernovae? , 1998 .

[55]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[56]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[57]  I. Zehavi,et al.  A Local Hubble Bubble from SNe Ia , 1998, astro-ph/9802252.

[58]  D. Branch,et al.  Extinction and Radial Distribution of Supernova Properties in Their Parent Galaxies , 1997, astro-ph/9711311.

[59]  D. Hogg,et al.  A Maximum Likelihood Method to Improve Faint‐Source Flux and Color Estimates , 1997, astro-ph/9711154.

[60]  A. Sandage,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. VIII. SN 1990N in NGC 4639 , 2001 .

[61]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[62]  Observatories of the Carnegie Institution of Washington,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. IX. SN 1989B in NGC 3627 , 1999, astro-ph/9904389.

[63]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[64]  Stefano Casertano,et al.  THE PHOTOMETRIC PERFORMANCE AND CALIBRATION OF WFPC2 , 1995 .

[65]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[66]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[67]  Wendy L. Freedman,et al.  THE CEPHEID DISTANCE SCALE , 1991 .

[68]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[69]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[70]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .