Static Output-Feedback Control for Vehicle Suspensions: A Single-Step Linear Matrix Inequality Approach

In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedback controller that only uses the suspension deflection and the sprung mass velocity as feedback information. Numerical simulations indicate that, despite the restricted feedback information, this static output-feedback controller exhibits an excellent behavior in terms of both frequency and time responses, when compared with the corresponding state-feedback controller.

[1]  Mansour Souissi,et al.  Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach , 2011 .

[2]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[3]  Pin-Lin Liu State feedback stabilization of time-varying delay uncertain systems: A delay decomposition approach , 2013 .

[4]  H. R. Karimi,et al.  Optimal passive-damping design using a decentralized velocity-feedback H ∞ approach , 2012 .

[5]  Hui Zhang,et al.  H∞ Step Tracking Control for Networked Discrete-Time Nonlinear Systems With Integral and Predictive Actions , 2013, IEEE Transactions on Industrial Informatics.

[6]  Gary J. Balas,et al.  Road adaptive active suspension design using linear parameter-varying gain-scheduling , 2002, IEEE Trans. Control. Syst. Technol..

[7]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[8]  L. C. Félix-Herrán,et al.  H ∞ control of a suspension with a magnetorheological damper , 2012, Int. J. Control.

[9]  Wen Tan,et al.  A direct composite H/sub /spl infin// controller design for a two-time-scale active suspension system , 1996, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation.

[10]  Hamid Reza Karimi,et al.  Vibration control for adjacent structures using local state information , 2014 .

[11]  Dong Yue,et al.  Fault tolerant control for systems with interval time-varying delay and actuator saturation , 2013, J. Frankl. Inst..

[12]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  S. Narayanan,et al.  Response of a quarter car model with optimal magnetorheological damper parameters , 2013 .

[14]  Huijun Gao,et al.  Input-Delayed Control of Uncertain Seat Suspension Systems With Human-Body Model , 2010, IEEE Transactions on Control Systems Technology.

[15]  H. Chen,et al.  An LMI based model predictive control scheme with guaranteed /spl Hscr//sub /spl infin// performance and its application to active suspension , 2004, Proceedings of the 2004 American Control Conference.

[16]  J. Lam,et al.  Decay rate constrained stabilization of positive systems using static output feedback , 2011 .

[17]  Haiping Du,et al.  Fuzzy Control for Nonlinear Uncertain Electrohydraulic Active Suspensions With Input Constraint , 2009, IEEE Trans. Fuzzy Syst..

[18]  Li Li,et al.  A Novel Approach to Control Design for Linear Neutral Time-Delay Systems , 2013 .

[19]  Nong Zhang,et al.  Integrated Seat and Suspension Control for a Quarter Car With Driver Model , 2012, IEEE Transactions on Vehicular Technology.

[20]  Ian Postlethwaite,et al.  Static output feedback stabilisation with H∞ performance for a class of plants , 2001, Syst. Control. Lett..

[21]  Zhongwei Lin,et al.  State-Feedback Control for LPV System Using T-S Fuzzy Linearization Approach , 2013 .

[22]  F. Lewis,et al.  Parameterization of All Stabilizing Hc. Static State-Feedback Gains: Application to Output-Feedback Design , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[23]  Hui Zhang,et al.  Robust H∞ sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities , 2013, Syst. Control. Lett..

[24]  James Lam,et al.  Non-fragile output feedback H∞ vehicle suspension control using genetic algorithm , 2003 .

[25]  Konghui Guo,et al.  Constrained H/sub /spl infin// control of active suspensions: an LMI approach , 2005, IEEE Transactions on Control Systems Technology.

[26]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[27]  Junwei Wang,et al.  Delay-dependent L2–L∞ control of linear systems with multiple time-varying state and input delays , 2012 .

[28]  Honghai Liu,et al.  Robust quantised control for active suspension systems , 2011 .

[29]  Guang-Ren Duan,et al.  Robust H ∞ control for a class of uncertain mechanical systems , 2010, Int. J. Control.

[30]  Hamid Reza Karimi,et al.  Static output-feedback control under information structure constraints , 2013, Autom..

[31]  Li-Xin Guo,et al.  Robust H ∞ control of active vehicle suspension under non-stationary running , 2012 .

[32]  R. Toscano A simple method to find a robust output feedback controller by random search approach. , 2006, ISA transactions.

[33]  Gary J. Balas,et al.  Design of Nonlinear Controllers for Active Vehicle Suspensions Using Parameter-Varying Control Synthesis , 2000 .

[34]  Hui Zhang,et al.  Robust ℋ︁∞ PID control for multivariable networked control systems with disturbance/noise attenuation , 2012 .

[35]  H. Chen,et al.  An LMI based model predictive control scheme with guaranteed 'FI, performance and its application to active suspension , 2004 .

[36]  Jinliang Liu,et al.  Reliable H ∞ non-uniform sampling tracking control for continuous-time non-linear systems with stochastic actuator faults , 2012 .

[37]  H. Karimi,et al.  Robust Reliable Control of Uncertain Discrete Impulsive Switched Systems with State Delays , 2013 .

[38]  Hui Zhang,et al.  Robust weighted H∞ filtering for networked systems with intermittent measurements of multiple sensors , 2011 .

[39]  AiguoWu,et al.  A Novel Approach to H ∞ Control Design for Linear Neutral Time-Delay Systems , 2015 .

[40]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[41]  Hamid Reza Karimi,et al.  Passive-damping design for vibration control of large structures , 2013, 2013 10th IEEE International Conference on Control and Automation (ICCA).

[42]  Yang Cui,et al.  Robust Control for a Class of Uncertain Switched Fuzzy Time-Delay Systems Based on T-S Models , 2013 .

[43]  Frank L. Lewis,et al.  Parameterization of all stabilizing Hinfinity static state-feedback gains: Application to output-feedback design , 2007, Autom..

[44]  Josep Rubió-Massegú,et al.  Decentralized static output‐feedback H∞ controller design for buildings under seismic excitation , 2012 .

[45]  Hamid Reza Karimi,et al.  Optimal passive-damping design using a decentralized velocity-feedback H-Infinity approach , 2012 .

[46]  Tetsuro Butsuen,et al.  Invariant Properties of Automotive Suspensions , 1990 .

[47]  Hamid Reza Karimi,et al.  Discrete-time static output-feedback semi-decentralized H∞ controller design: An application to structural vibration control , 2012, 2012 American Control Conference (ACC).

[48]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[49]  F. Amato,et al.  Domain of attraction and guaranteed cost control for non-linear quadratic systems. Part 2: controller design , 2013 .

[50]  A. Calise,et al.  Convergence of a numerical algorithm for calculating optimal output feedback gains , 1985 .