Positive-Feedback Theory of Hysteretic Recoil Loops in Hard Ferromagnetic Materials

This paper develops a physically-based analytical theory that can be used to model recoil loops, as well as major loops and first- and second-order return curves, in hard ferromagnetic materials that display return-point memory. Atomic-scale quantum-mechanical considerations lead to basic S-shaped magnetization curves that account for hysteretic effects in major and minor loops, as well as their reversibility and irreversibility. These loops exhibit perfect closure only in the presence of the return-point-memory effect. Field (energy) contributions from this hysteretic scenario are summed with contributions due to the classical-physics domain-scale anhysteretic scenario and to the macroscopic demagnetizing field, to obtain a summed scenario that can model isotropic and certain anisotropic materials. Analytical expressions are obtained for all reversal curves up to second order, under the return-point-memory constraint, so that closed recoil loops can be modeled. The theory is validated by comparison with measured data for five different materials.

[1]  J. Liu,et al.  Grain boundary contribution to recoil loop openness of exchange-coupled nanocrystalline magnets , 2009 .

[2]  R. Harrison,et al.  Physical Theory of Ferromagnetic First-Order Return Curves , 2009, IEEE Transactions on Magnetics.

[3]  Guangheng Wu,et al.  The physical origin of open recoil loops in nanocrystalline permanent magnets , 2008 .

[4]  J. Pearson,et al.  Element-specific recoil loops in Sm–Co∕Fe exchange-spring magnets , 2008 .

[5]  B. V. Wiele,et al.  Memory properties in a 3D micromagnetic model for ferromagnetic samples , 2008 .

[6]  J. Pearson,et al.  Origin of recoil hysteresis loops in Sm-Co/Fe exchange-spring magnets. , 2007 .

[7]  J. M. Deutsch,et al.  Disorder-induced magnetic memory : Experiments and theories , 2006, cond-mat/0611542.

[8]  M. Dapino,et al.  A homogenized energy framework for ferromagnetic hysteresis , 2006, IEEE Transactions on Magnetics.

[9]  Luc Dupré,et al.  Memory properties in a Landau-Lifshitz hysteresis model for thin ferromagnetic sheets , 2006 .

[10]  R. McCallum The requirements for hysteresis in the recoil loop of an exchange-coupled permanent magnet , 2006 .

[11]  Ralph C. Smith,et al.  A reptation model for magnetic materials , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  M. Coïsson,et al.  Reversible and irreversible magnetization processes in materials displaying two-dimensional hysteresis , 2006 .

[13]  J. M. Deutsch,et al.  Disorder-induced microscopic magnetic memory. , 2004, Physical review letters.

[14]  Hans Hauser,et al.  Energetic model of ferromagnetic hysteresis: Isotropic magnetization , 2004 .

[15]  R.G. Harrison,et al.  Variable-domain-size theory of spin ferromagnetism , 2004, IEEE Transactions on Magnetics.

[16]  P. Marketos,et al.  Congruency-based hysteresis models for transient simulation , 2004, IEEE Transactions on Magnetics.

[17]  L. H. Lewis,et al.  Exchange coupling and recoil loop area in Nd2Fe14B nanocrystalline alloys , 2004 .

[18]  M. Trlep,et al.  Hysteresis model and examples of ferromagnetic materials , 2003 .

[19]  O. Hellwig,et al.  Quasistatic x-ray speckle metrology of microscopic magnetic return-point memory. , 2003, Physical review letters.

[20]  R. Harrison,et al.  A physical model of spin ferromagnetism , 2003 .

[21]  S. K. Wong,et al.  The reversal mechanism and coercivity of Pt/sub 3/Co alloy film , 2001 .

[22]  D. Cornejo,et al.  Reversible and irreversible magnetization in hybrid magnets , 2000 .

[23]  D. Cornejo,et al.  Application of the Preisach model to nanocrystalline magnets , 1999 .

[24]  S. E. Zirka,et al.  Hysteresis modeling based on similarity , 1999 .

[25]  G. Bertotti,et al.  Moving Preisach model analysis of nanocrystalline SmFeCo , 1997 .

[26]  R. Street,et al.  Measurement of magnetic viscosity in a Stoner-Wohlfarth material , 1996 .

[27]  David Jiles,et al.  A model of anisotropic anhysteretic magnetization , 1996 .

[28]  XiaoNian Huang,et al.  Experimental determination of an effective demagnetization factor for nonellipsoidal geometries , 1996 .

[29]  A. Infortuna,et al.  Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials , 1995 .

[30]  S. E. Zirka,et al.  Hysteresis modeling based on transplantation , 1995 .

[31]  Hellman,et al.  Evidence of a Surface-Mediated Magnetically Induced Miscibility Gap in Co-Pt Alloy Thin Films. , 1995, Physical review letters.

[32]  Hans Hauser,et al.  Energetic model of ferromagnetic hysteresis , 1994 .

[33]  J. Sethna,et al.  Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. , 1992, Physical review letters.

[34]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[35]  M. Schabes,et al.  Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles , 1991 .

[36]  E. Della Torre,et al.  Preisach modeling and reversible magnetization , 1990 .

[37]  S. Charap,et al.  A better scalar Preisach algorithm , 1988 .

[38]  E. Schlömann,et al.  Demagnetizing Field in Nonellipsoidal Bodies , 1965 .

[39]  D. Cornejo,et al.  Reversible and irreversible magnetization behavior in SmCo films , 2000 .

[40]  S. Charap,et al.  Physics of magnetism , 1964 .

[41]  E. Madelung,et al.  Über Magnetisierung durch schnellverlaufende Ströme und die Wirkungsweise des Rutherford-Marconischen Magnetdetektors , 1905 .