Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad

Mineral dust aerosols play an important role in the climate system. Coupled climate-aerosol models are an important tool with which to quantify dust fluxes and the associated climate impact. Over the last decade or more, numerous models have been developed, both global and regional, but to date, there have been few attempts to compare the performance of these models. In this paper a comparison of five regional atmospheric models with dust modules is made, in terms of their simulation of meteorology, dust emission and transport. The intercomparison focuses on a 3-day dust event over the Bodele depression in northern Chad, the world's single most important dust source. Simulations are compared to satellite data and in situ observations from the Bodele Dust Experiment (BoDEx 2005). Overall, the models reproduce many of the key features of the meteorology and the large dust plumes that occur over the study domain. However, there is at least an order of magnitude range in model estimates of key quantities including dust concentration, dust burden, dust flux, and aerosol optical thickness. As such, there remains considerable uncertainty in model estimates of the dust cycle and its interaction with climate. This paper discusses the issues associated with partitioning various sources of model uncertainty.

[1]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[2]  A. C. Chamberlain Roughness length of sea, sand, and snow , 1983 .

[3]  N. Mahowald,et al.  Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database , 2008 .

[4]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[5]  D. Fillmore,et al.  Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre‐industrial, current and doubled‐carbon dioxide climates , 2006 .

[6]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[7]  Y. Kaufman,et al.  The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest , 2006 .

[8]  L. Gomes,et al.  Dusty weather forecasts using the MesoNH mesoscale atmospheric model , 2006 .

[9]  Nobuo Sugimoto,et al.  Dust model intercomparison (DMIP) study over Asia: Overview , 2006 .

[10]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[11]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[12]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[13]  E. Matthews,et al.  Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases , 1984 .

[14]  Jed O. Kaplan,et al.  Geophysical Applications of Vegetation Modeling , 2001 .

[15]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[16]  Roger A. Pielke,et al.  Coupled Atmosphere–Biophysics–Hydrology Models for Environmental Modeling , 2000 .

[17]  Albert Ansmann,et al.  Regional modeling of Saharan dust events using LM-MUSCAT: Model description and case studies , 2007 .

[18]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[19]  Peter J. Lamb,et al.  African Droughts and Dust Transport to the Caribbean: Climate Change Implications , 2003, Science.

[20]  L. Gomes,et al.  Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas , 2001 .

[21]  C. Zender,et al.  Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates , 2004 .

[22]  N. Drake,et al.  Dust-raising in the dustiest place on earth , 2007 .

[23]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[24]  W. Cotton,et al.  RAMS 2001: Current status and future directions , 2003 .

[25]  R. Washington,et al.  Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations , 2003 .

[26]  P. Drobinski,et al.  Characterization of the Diurnal Cycle of the West African Monsoon around the Monsoon Onset , 2007 .

[27]  R. Hamilton,et al.  Meteorology of Nigeria and adjacent territory , 1945 .

[28]  I. Tegen,et al.  Surface wind accuracy for modeling mineral dust emissions: Comparing two regional models in a Bodélé case study , 2008 .

[29]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[30]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[31]  T. N. Krishnamurti,et al.  Climate and Circulation of the Tropics , 1987 .

[32]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[33]  R. R. Burton,et al.  The diurnal cycle of the West African monsoon circulation , 2005 .

[34]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[35]  B. Marticorena,et al.  Mesoscale modeling of aeolian dust emission during the BoDEx 2005 experiment , 2007 .

[36]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[37]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[38]  On the impact of thermal stability on some rough flow effects over mobile surfaces , 1990 .

[39]  Oleg Dubovik,et al.  Mineral dust emission from the Bodélé Depression, northern Chad, during BoDEx 2005 , 2007 .

[40]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[41]  K. Suhre,et al.  ORILAM, a three‐moment lognormal aerosol scheme for mesoscale atmospheric model: Online coupling into the Meso‐NH‐C model and validation on the Escompte campaign , 2005 .

[42]  F. Giorgi,et al.  Implementation and testing of a desert dust module in a regional climate model , 2006 .

[43]  P. May The Australian nocturnal jet and diurnal variations of boundary‐layer winds over Mt. Isa in North‐eastern Australia , 1995 .

[44]  Michael T. Coe,et al.  A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands , 1998 .

[45]  O. Dubovik,et al.  Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign , 2006 .

[46]  N. Drake,et al.  Shorelines in the Sahara: geomorphological evidence for an enhanced monsoon from palaeolake Megachad , 2006 .

[47]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Yoram J. Kaufman,et al.  Direct wind measurements of Saharan dust events from Terra and Aqua satellites , 2004 .

[49]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[50]  Nicolas Clerbaux,et al.  Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003 , 2005 .

[51]  Richard Washington,et al.  Regional Model Simulations of the Bodélé Low-Level Jet of Northern Chad during the Bodélé Dust Experiment (BoDEx 2005) , 2008 .

[52]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[53]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[54]  Charles S. Zender,et al.  Impact of Desert Dust Radiative Forcing on Sahel Precipitation , 2005 .

[55]  A. Blackadar Boundary Layer Wind Maxima and Their Significance for the Growth of Nocturnal Inversions , 1957 .

[56]  Peter Knippertz,et al.  Dust emissions in the West African heat trough the role of the diurnal cycle and of extratropical disturbances , 2008 .

[57]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[58]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[59]  Sundar A. Christopher,et al.  Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra , 2003 .

[60]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[61]  G. E. Hill Factors Controlling the Size and Spacing of Cumulus Clouds as Revealed by Numerical Experiments , 1974 .

[62]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[63]  Nick Middleton,et al.  The changing frequency of dust storms through time , 1992 .

[64]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[65]  Richard Washington,et al.  Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet , 2005 .

[66]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[67]  Thomas Jung,et al.  Understanding the local and global impacts of model physics changes: an aerosol example , 2008 .

[68]  Richard Washington,et al.  Dust and the low‐level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005 , 2006 .

[69]  G. Bergametti,et al.  Mapping the aerodynamic roughness length of desert surfaces from the POLDER/ADEOS bi-directional reflectance product , 2004 .

[70]  A. Kelessis,et al.  The dependence of the bulk Richardson number on stability in the surface layer , 1991 .

[71]  D. Lilly,et al.  On the numerical simulation of buoyant convection , 1962 .