ACTIVE GALACTIC NUCLEUS AND QUASAR SCIENCE WITH APERTURE MASKING INTERFEROMETRY ON THE JAMES WEBB SPACE TELESCOPE

Due to feedback from accretion onto supermassive black holes (SMBHs), active galactic nuclei (AGNs) are believed to play a key role in ΛCDM cosmology and galaxy formation. However, AGNs extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show that the James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e., without any requirement of prior assumptions on source geometry) at ∼65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ∼10{sup –2} around an L = 7.5 point source, using short exposure times (minutes). Such images will test models of AGN feedback, fueling, and structure (complementary with ALMA observations), and are not currently supported by any ground-based IR interferometer or telescope. Binary point source contrast with NIRISS is ∼10{sup –4} (for observing binary nuclei in merging galaxies), significantly better than current ground-based optical or IR interferometry. JWST-NIRISS's seven-hole non-redundantmore » mask has a throughput of 15%, and utilizes NIRISS's F277W (2.77 μm), F380M (3.8 μm), F430M (4.3 μm), and F480M (4.8 μm) filters. NIRISS's square pixels are 65 mas per side, with a field of view ∼2' × 2'. We also extrapolate our results to AGN science enabled by non-redundant masking on future 2.4 m and 16 m space telescopes working at long-UV to near-IR wavelengths.« less

[1]  D. Lin,et al.  Star trapping and metallicity enrichment in quasars and active galactic nuclei , 1993 .

[2]  Z. Haiman,et al.  THE POPULATION OF VISCOSITY- AND GRAVITATIONAL WAVE-DRIVEN SUPERMASSIVE BLACK HOLE BINARIES AMONG LUMINOUS ACTIVE GALACTIC NUCLEI , 2009, 0904.1383.

[3]  G. Neugebauer,et al.  Diffraction-Limited Imaging with Ground-Based Optical Telescopes , 1988 .

[4]  Walter Jaffe,et al.  Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust , 2009, 0901.1306.

[5]  Adi Nusser,et al.  THE MASSIVE-BLACK-HOLE–VELOCITY-DISPERSION RELATION AND THE HALO BARYON FRACTION: A CASE FOR POSITIVE ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1004.0857.

[6]  P. Martini,et al.  Circumnuclear Dust in Nearby Active and Inactive Galaxies. II. Bars, Nuclear Spirals, and the Fueling of Active Galactic Nuclei , 2002, astro-ph/0212391.

[7]  B. McKernan,et al.  Black hole mass, host galaxy classification and AGN activity , 2010, 1005.4907.

[8]  David Mary,et al.  The 2012 interferometric imaging beauty contest , 2012, Other Conferences.

[9]  Yue Shen,et al.  DISCOVERY OF FOUR kpc-SCALE BINARY ACTIVE GALACTIC NUCLEI , 2010 .

[10]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008 .

[11]  M. H. Ulrich The active galaxy NGC 4151: Archetype or exception? , 2000 .

[12]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[13]  John N. Bahcall,et al.  Hubble Space Telescope Images of a Sample of 20 Nearby Luminous Quasars , 1996, astro-ph/9611163.

[14]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[15]  Frantz Martinache,et al.  Non-redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS , 2012, Other Conferences.

[16]  P. Tuthill,et al.  Michelson Interferometry with the Keck I Telescope , 2000 .

[17]  J. Newman,et al.  KILOPARSEC-SCALE SPATIAL OFFSETS IN DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. I. MARKERS FOR SELECTION OF COMPELLING DUAL ACTIVE GALACTIC NUCLEUS CANDIDATES , 2011, 1111.2862.

[18]  Michael J. Ireland,et al.  Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking , 2013 .

[19]  Yue Shen,et al.  THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS–LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS , 2012, 1209.0477.

[20]  Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas* , 2006, astro-ph/0603180.

[21]  C. Winge,et al.  Hubble Space Telescope Faint Object Camera Spectroscopy of the Narrow-Line Region of NGC 4151. I. Gas Kinematics , 1999 .

[22]  William C. Danchi,et al.  Michelson interferometry with Keck I , 1998, Astronomical Telescopes and Instrumentation.

[23]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[24]  S. Tremaine,et al.  Eccentric-Disk Models for the Nucleus of M31 , 1995, astro-ph/0307412.

[25]  J. Papaloizou,et al.  THE EVOLUTION OF A SUPERMASSIVE BINARY CAUSED BY AN ACCRETION DISC , 1998, astro-ph/9812198.

[26]  C. A. Haniff,et al.  Closure phase in high-resolution optical imaging , 1986, Nature.

[27]  R. Bouwens,et al.  Coronagraphic Imaging of 3C 273 with the Advanced Camera for Surveys , 2003 .

[28]  L. Miller,et al.  X-ray absorption and reflection in active galactic nuclei , 2009, 0902.0651.

[29]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[30]  L. Ho Nuclear Activity in Nearby Galaxies , 2008, 0803.2268.

[31]  M. Elvis,et al.  Ubiquitous Variability of X-Ray-absorbing Column Densities in Seyfert 2 Galaxies , 2001, astro-ph/0107510.

[32]  A. Lagrange,et al.  Sparse aperture masking at the VLT. I. Faint companion detection limits for the two debris disk stars HD 92945 and HD 141569 , 2011, 1107.1426.

[33]  H. Perets,et al.  Intermediate mass black holes in AGN discs – I. Production and growth , 2012, 1206.2309.

[34]  J. Véran,et al.  60 Milliarcsecond Near‐Infrared Imaging of 3C 273 with Altair and Gemini , 2004 .

[35]  Timothy M. Heckman,et al.  Feast and Famine: regulation of black hole growth in low-redshift galaxies , 2008, 0812.1224.

[36]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[37]  E. Sirko,et al.  Spectral energy distributions of marginally self-gravitating quasi-stellar object discs , 2003 .

[38]  Marek Sikora,et al.  Black Hole Spin and Galactic Morphology , 2007, 0706.3900.

[39]  Ralf Bender,et al.  HST STIS Spectroscopy of the Triple Nucleus of M31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole , 2005, astro-ph/0509839.

[40]  R. C. Walker,et al.  Mapping radio sources with uncalibrated visibility data , 1980, Nature.

[41]  Planetary torques as the viscosity of protoplanetary disks , 2000, astro-ph/0010576.

[42]  D. Syer,et al.  Satellites in discs: regulating the accretion luminosity , 1995, astro-ph/9505021.

[43]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[44]  T. Lauer,et al.  THE CLUSTER OF BLUE STARS SURROUNDING THE M31 NUCLEAR BLACK HOLE , 2011, 1112.1419.

[45]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[46]  Jonathan C. Tan,et al.  Supermassive Stars in Quasar Disks , 2004 .

[47]  K. Meisenheimer,et al.  Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster , 2009, 0912.4677.

[48]  S. Tremaine,et al.  Eccentric-Disk Models for the Nucleus of M31 , 2003, astro-ph/0307412.

[49]  B. McKernan,et al.  A soft X-ray study of type I active galactic nuclei observed with Chandra high-energy transmission grating spectrometer , 2007 .

[50]  Fabien Malbet,et al.  Image reconstruction in optical interferometry: benchmarking the regularization , 2011, 1106.4508.

[51]  HST Images of Nearby Luminous Quasars II: Results for Eight Quasars and Tests of the Detection Sensitivity , 1995, astro-ph/9501018.

[52]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[53]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[54]  B. McKernan,et al.  A NEW DELIVERY ROUTE TO GALACTIC NUCLEI: WARM HALO CLOUD IMPACTS , 2010, 1006.0169.

[55]  E. Tempel,et al.  Dust-corrected surface photometry of M 31 from Spitzer far-infrared observations , 2009, 0912.0124.

[56]  T. D. Matteo,et al.  Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment , 2000 .

[57]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[58]  T. Muxlow,et al.  The radio nucleus of NGC 4151 at 5 and 8 GHz , 1993 .

[59]  Frantz Martinache,et al.  Direct detection of the brown dwarf GJ 802B with adaptive optics masking interferometry , 2006 .

[60]  C. A. Haniff,et al.  The first images from optical aperture synthesis , 1987, Nature.

[61]  S. Bianchi,et al.  Does the X-ray emission of the luminous quasar RBS 1124 originate in a mildly relativistic outflowing corona? , 2009, 0909.2960.

[62]  L. Feinberg,et al.  Gas Cloud Kinematics near the Nucleus of NGC 4151 , 1998 .

[63]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[64]  Yuri Levin Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band , 2007 .

[65]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[66]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[67]  J. Houck,et al.  EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES , 2009, 0904.2331.

[68]  Frantz Martinache,et al.  Planetary system and star formation science with non-redundant masking on JWST , 2010, Astronomical Telescopes + Instrumentation.

[69]  Anand Sivaramakrishnan,et al.  Flat field errors and intra-pixel sensitivities for non-redundant aperture masking interferometry on JWST NIRISS , 2013, Optics & Photonics - Optical Engineering + Applications.

[70]  J. Comerford,et al.  DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY , 2013, 1309.2284.

[71]  A. Lawrence,et al.  MISALIGNED DISKS AS OBSCURERS IN ACTIVE GALAXIES , 2010 .

[72]  M. Begelman,et al.  Self-gravitating accretion disks in active galactic nuclei , 1987, Nature.

[73]  Z. Haiman,et al.  Gas pile‐up, gap overflow and Type 1.5 migration in circumbinary discs: general theory , 2012, 1205.4714.

[74]  Andrew King,et al.  Growing supermassive black holes by chaotic accretion , 2006 .

[75]  M. Elitzur,et al.  DUSTY STRUCTURE AROUND TYPE-I ACTIVE GALACTIC NUCLEI: CLUMPY TORUS NARROW-LINE REGION AND NEAR-NUCLEUS HOT DUST , 2009, 0907.1654.

[76]  T. Lauer,et al.  M32 ± 1 , 1998, astro-ph/9806277.

[77]  C. G. Mundell,et al.  The Nuclear Regions of the Seyfert Galaxy NGC 4151: Parsec-Scale H I Absorption and a Remarkable Radio Jet , 2002, astro-ph/0209540.

[78]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[79]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[80]  E. I. Robson,et al.  The multiwavelength variability of 3C 273 , 2008, 0805.3411.

[81]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[82]  P. Hopkins,et al.  How do massive black holes get their gas , 2009, 0912.3257.

[83]  PARSEC-SCALE BLAZAR MONITORING: PROPER MOTIONS , 2000, astro-ph/0009301.

[84]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[85]  Walter Jaffe,et al.  DUST EMISSION FROM A PARSEC-SCALE STRUCTURE IN THE SEYFERT 1 NUCLEUS OF NGC 4151 , 2009, 0909.5191.