Constraint Satisfaction Problems Solvable by Local Consistency Methods

We prove that constraint satisfaction problems without the ability to count are solvable by the local consistency checking algorithm. This settles three (equivalent) conjectures: Feder--Vardi [SICOMP’98], Bulatov [LICS’04] and Larose--Zádori [AU’07].

[1]  M. Maróti,et al.  Existence theorems for weakly symmetric operations , 2008 .

[2]  Libor Barto,et al.  Robust satisfiability of constraint satisfaction problems , 2012, STOC '12.

[3]  Andrei A. Bulatov,et al.  Recent Results on the Algebraic Approach to the CSP , 2008, Complexity of Constraints.

[4]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[5]  L. Barto,et al.  Mal’tsev conditions, lack of absorption, and solvability , 2015 .

[6]  Libor Barto,et al.  Congruence Distributivity Implies Bounded Width , 2009, SIAM J. Comput..

[7]  A. Bulatov Combinatorial problems raised from 2-semilattices , 2006 .

[8]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[9]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[10]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[11]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[12]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[13]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[14]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[15]  Pascal Tesson,et al.  Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..

[16]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[17]  Andrei A. Bulatov,et al.  Bounded relational width , 2009 .

[18]  Libor Barto,et al.  New Conditions for Taylor Varieties and CSP , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[19]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[20]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[21]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[22]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[23]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[24]  Miklós Maróti,et al.  CD(4) has bounded width , 2007, ArXiv.

[25]  C. Bergman,et al.  Universal Algebra: Fundamentals and Selected Topics , 2011 .

[26]  A. A. Bulatov The complexity of the conservative constraint satisfiability , 2004 .

[27]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[28]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[29]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[30]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[31]  Libor Barto,et al.  The collapse of the bounded width hierarchy , 2016, J. Log. Comput..

[32]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[33]  Pawel M. Idziak,et al.  Tractability and Learnability Arising from Algebras with Few Subpowers , 2010, SIAM J. Comput..

[34]  Benoît Larose,et al.  Omitting Types, Bounded Width and the Ability to Count , 2009, Int. J. Algebra Comput..