The Investigation of CO2 Gas Sensing Performance of ZnO Nanorods Growth on RF Sputtered Seed Layer

In this study, one-dimensional ZnO nanorod structures with different ratios of nickel doping were produced using the hydrothermal method. The presence of nickel doping in different ratios caused variations in the fundamental characteristics of the nanorods that grew on the RF sputtered seed layer, such as crystallinity quality, morphology, diameter of the nanorods, band gap energy, resistance of the sample, and CO2 gas sensing. Produced samples were found to form like hexagonal rods and crystallize in a wurtzite structure, and the ratio of nickel doping improved the crystallin quality and the morphology of sample surface. This study showed that the 5% nickel doped sample provided the most effective results in sensing CO2 gas at different concentrations. Overall, the study provided valuable insights into the relationship between doping system and the basic characteristics of wurtzite-type hexagonal ZnO.

[1]  Sunghoon Park,et al.  Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: fabrication, characterization, and sensing mechanism exploration , 2023, Sensors and Actuators B: Chemical.

[2]  Arun Kumar,et al.  Transition in the preferred orientation of RF sputtered ZnO/Si thin films by thermal annealing: Structural, morphological, and optical characteristics , 2022, Optical materials (Amsterdam).

[3]  Congling Shi,et al.  Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes , 2022, Composites Part A: Applied Science and Manufacturing.

[4]  S. Acar,et al.  Pivotal role of nucleation layers in the hydrothermally-assisted growth of ZnO and its H2 gas sensing performance , 2022, Sensors and Actuators B: Chemical.

[5]  Shubham Saini,et al.  Highly sensitive NO2 gas sensor based on Ag decorated ZnO nanorods , 2022, Applied Physics A.

[6]  S. Acar,et al.  Effect of Ni and Al doping on structural, optical, and CO2 gas sensing properties of 1D ZnO nanorods produced by hydrothermal method , 2021, Microscopy research and technique.

[7]  G. Khouqeer,et al.  Synthesis and Characterization of Ni-Doped ZnO Nanoparticles for CO2 Gas Sensing , 2021, Journal of Nanoelectronics and Optoelectronics.

[8]  Y. Ocak,et al.  CO2 sensing behavior of vertically aligned Si Nanowire/ZnO structures , 2021 .

[9]  V. Patil,et al.  Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures , 2021, Journal of Materials Science: Materials in Electronics.

[10]  V. Chawla,et al.  Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: An experimental & first-principles investigation , 2020 .

[11]  S. Singh,et al.  Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection , 2019, ACS Applied Nano Materials.

[12]  Fengmin Liu,et al.  The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species , 2018, Sensors and Actuators B: Chemical.

[13]  Yu Ying,et al.  Nanomaterial-based gas sensors: A review , 2018 .

[14]  P. Patil,et al.  Preparation, characterization of 1D ZnO nanorods and their gas sensing properties , 2018 .

[15]  S. Jit,et al.  A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates , 2017 .

[16]  Nicola Donato,et al.  Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors , 2017 .

[17]  Dong-weon Lee,et al.  Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method , 2016 .

[18]  Sunghoon Park,et al.  ZnO-capped nanorod gas sensors , 2016 .

[19]  J. H. Lee,et al.  Ultrasensitive detection of trimethylamine using Rh-doped SnO2 hollow spheres prepared by ultrasonic spray pyrolysis , 2015 .

[20]  John Bosco Balaguru Rayappan,et al.  CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film , 2014 .

[21]  Huiqing Fan,et al.  Ni-doped ZnO nanorods gas sensor: Enhanced gas-sensing properties, AC and DC electrical behaviors , 2014 .

[22]  Byoung Sam Kang,et al.  Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices , 2009, Sensors.

[23]  Adisorn Tuantranont,et al.  Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films , 2009 .

[24]  B. Akata,et al.  Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection , 2017, Journal of Materials Science: Materials in Electronics.