Electromagnetic waves in fractal nanostructures

Spectral and localization properties of electromagnetic wave propagation in fractal nanostructures have been reviewed and summarized. Quarter-wave binary multilayer structures have been chosen as a simplest model that would allow to isolate effects pertaining to the geometrical organization of the structure. Intra- and inter-generation scaling relations have been obtained and compared to those known for quasiperiodic structures. Localization patterns have been shown to have an intermediate form between extended and localized eigenstates.

[1]  Alexander Eychmüller,et al.  Self-organization of uniform silica globules into the three-dimensional superlattice of artificial opals , 1999 .

[2]  S. V. Zhukovsky,et al.  Spectral self-similarity in fractal one-dimensional photonic structures , 2005 .

[3]  Hattori,et al.  Cantor set fiber Bragg grating , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Norio Shinya,et al.  Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation , 2002 .

[5]  B. Rezig,et al.  Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures , 2001 .

[6]  V V Zosimov,et al.  Fractals in wave processes , 1995 .

[7]  Akhlesh Lakhtakia,et al.  Transmission through Cantor filters revisited , 2002 .

[8]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[9]  Yong Wang,et al.  Numerical investigation of light-wave localization in optical Fibonacci superlattices with symmetric internal structure , 1999 .

[10]  S. V. Zhukovsky,et al.  Spectral scalability as a result of geometrical self-similarity in fractal multilayers , 2004, 1611.04682.

[11]  S. John,et al.  Localization of Light in Disordered and Periodic Dielectrics , 1995 .

[12]  Quang,et al.  Spontaneous emission near the edge of a photonic band gap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  Sergey V. Gaponenko,et al.  Optical Waves in One-Dimensional Fractal Inhomogeneous Media , 2004 .

[14]  A. Lavrinenko,et al.  Propagation of classical waves in nonperiodic media: scaling properties of an optical Cantor filter. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Marin Soljacic,et al.  Cantor Set Fractals from Solitons , 1999 .

[16]  Hui Cao,et al.  Lasing in random media , 2003 .

[17]  Andrei V. Lavrinenko,et al.  Scaling properties of multilayer fractal structures , 2002, Saratov Fall Meeting.

[18]  Enrique Maciá,et al.  Exploiting quasiperiodic order in the design of optical devices , 2001 .

[19]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[20]  M. Scalora,et al.  Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[21]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[22]  Edita Pelantová,et al.  Substitution rules for aperiodic sequences of the cut and project type , 2000 .

[23]  Ru-Wen Peng,et al.  PHOTONIC LOCALIZATION IN ONE-DIMENSIONAL K-COMPONENT FIBONACCI STRUCTURES , 1998 .

[24]  Krylov,et al.  Cantor set fractals from solitons , 1999, Physical review letters.

[25]  L. Carr,et al.  Observation of spin-wave soliton fractals in magnetic film active feedback rings. , 2006, Physical review letters.

[26]  Kenneth Järrendahl,et al.  Growth and ellipsometric studies of periodic and cantor aperiodic amorphous Ge/Si superlattices , 1994 .

[27]  S. V. Gaponenkoa,et al.  Propagation of waves in layered structures viewed as number recognition , 2002 .

[28]  Tang,et al.  Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. , 1987, Physical review. B, Condensed matter.

[29]  E. L. Albuquerque,et al.  Optical localization in quasi-periodic multilayers , 1998 .

[30]  Kohmoto,et al.  Localization of optics: Quasiperiodic media. , 1987, Physical review letters.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  D. Jaggard,et al.  Wave interactions with generalized Cantor bar fractal multilayers , 1991 .

[33]  D. Jaggard,et al.  Reflection from fractal multilayers. , 1990, Optics letters.

[34]  A. D. Jaggard,et al.  Polyadic Cantor superlattices with variable lacunarity. , 1997, Optics letters.

[35]  Haruo Tanaka,et al.  Wave transmission through a one-dimensional fractal system , 2001 .

[36]  Mario Bertolotti,et al.  Optical properties of quasiperiodic (self-similar) structures , 1998 .

[37]  Andre Khalil,et al.  The Fractal Structure of the Universe , 2008 .

[38]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[39]  Sergei V. Zhukovsky,et al.  Low-loss resonant modes in deterministically aperiodic nanopillar waveguides , 2006 .