A Review of Antennas for Picosatellite Applications

Cube Satellite (CubeSat) technology is an attractive emerging alternative to conventional satellites in radio astronomy, earth observation, weather forecasting, space research, and communications. Its size, however, poses a more challenging restriction on the circuitry and components as they are expected to be closely spaced and very power efficient. One of the main components that will require careful design for CubeSats is their antennas, as they are needed to be lightweight, small in size, and compact or deployable for larger antennas. This paper presents a review of antennas suitable for picosatellite applications. An overview of the applications of picosatellites will first be explained, prior to a discussion on their antenna requirements. Material and antenna topologies which have been used will be subsequently discussed prior to the presentation of several deployable configurations. Finally, a perspective and future research work on CubeSat antennas will be discussed in the conclusion.

[1]  Eric M. Flint,et al.  Experimentally Characterizing the Dynamics of 0.5m+ Diameter Doubly Curved Shells Made From Thin Films , 2003 .

[2]  L. Boccia,et al.  Antennas for Modern Small Satellites , 2009, IEEE Antennas and Propagation Magazine.

[3]  Yahya Rahmat-Samii,et al.  Technology Trends and Challenges of Antennas for Satellite Communication Systems , 2015, IEEE Transactions on Antennas and Propagation.

[4]  David Krejci,et al.  A survey and assessment of the capabilities of Cubesats for Earth observation , 2012 .

[5]  Yi-Cheng Lin,et al.  A Compact Sequential-Phase Feed Using Uniform Transmission Lines for Circularly Polarized Sequential-Rotation Arrays , 2011, IEEE Transactions on Antennas and Propagation.

[6]  M. S. Uludag,et al.  Development of a LEO communication CubeSat , 2013, 2013 6th International Conference on Recent Advances in Space Technologies (RAST).

[7]  Joseph Simonds,et al.  Making SENSE: The SMC/XR space weather CubeSat demonstration , 2011, 2011 Aerospace Conference.

[8]  Eberhard Gill,et al.  A novel astronomical application for formation flying small satellites , 2009 .

[9]  Atif Shamim,et al.  3-D Inkjet-Printed Helical Antenna with Integrated Lens , 2017, IEEE Antennas and Wireless Propagation Letters.

[10]  Timothy D. Drysdale,et al.  V-Band “Bull's Eye” Antenna for CubeSat Applications , 2014, IEEE Antennas and Wireless Propagation Letters.

[11]  Sara Seager,et al.  Inflatable antenna for cubesats: Motivation for development and antenna design , 2013 .

[12]  Huy Hung Tran,et al.  Compact crossed dipole antenna for a broadband UHF-RFID tag , 2015, 2015 International Workshop on Antenna Technology (iWAT).

[13]  Haitao Liu,et al.  Electrically Small and Low Cost Smart Antenna for Wireless Communication , 2012, IEEE Transactions on Antennas and Propagation.

[14]  Yan Xu,et al.  Structure design and mechanical measurement of inflatable antenna , 2012 .

[15]  Son Xuat Ta,et al.  Applications of circularly polarized crossed dipole antennas , 2014, 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT).

[16]  Mark Bentum,et al.  Orbiting Low Frequency Array for radio astronomy , 2011, 2011 Aerospace Conference.

[17]  John Lassiter,et al.  Structural dynamics experimental activities in ultra-lightweight and inflatable space structures , 2001 .

[18]  Shinichi Nakasuka,et al.  Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator , 2016 .

[19]  H. Wong,et al.  A Wideband Circularly Polarized Cross-Dipole Antenna , 2014, IEEE Antennas and Wireless Propagation Letters.

[20]  Jian Guo,et al.  Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology , 2010 .

[21]  Axel Böttcher,et al.  Analysis of System Parameters for LEO/ICO-Satellite Communication Networks , 1995, IEEE J. Sel. Areas Commun..

[22]  Yahya Rahmat-Samii,et al.  CubeSat deployable Ka-band reflector antenna for Deep Space missions , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[23]  Xu Yan,et al.  Inflatable Antenna for Space-Borne Microwave Remote Sensing , 2012, IEEE Antennas and Propagation Magazine.

[24]  Shinichi Nakasuka,et al.  University of Tokyo's CubeSat Project: Its Educational and Technological Significance , 2001 .

[25]  W. Marsden I and J , 2012 .

[26]  Jordi Puig-Suari,et al.  CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation , 2000 .

[27]  J. Puig-Suari,et al.  Development of the standard CubeSat deployer and a CubeSat class PicoSatellite , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[28]  Richard E. Hodges,et al.  ISARA - Integrated Solar Array and Reflectarray CubeSat deployable Ka-band antenna , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[29]  Javad Nourinia,et al.  Circularly Polarized Circular Slot Antenna Array Using Sequentially Rotated Feed Network , 2012 .

[30]  J. Costantine,et al.  Deployable antennas for CubeSat and space communications , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[31]  M. Heimlich,et al.  A 3D printed dual-ridged horn antenna , 2016, 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[32]  H. M. Al-Rizzo,et al.  Compact Polyimide-Based Antennas for Flexible Displays , 2012, Journal of Display Technology.

[33]  Christopher W. Trueman,et al.  Design and Implementation of a Diplexer and a Dual-Band VHF/UHF Antenna for Nanosatellites , 2013, IEEE Antennas and Wireless Propagation Letters.

[34]  Nasimuddin,et al.  Compact Circularly Polarized Symmetric-Slit Microstrip Antennas , 2011, IEEE Antennas and Propagation Magazine.

[35]  A. Shamim,et al.  A Compact Kapton-Based Inkjet-Printed Multiband Antenna for Flexible Wireless Devices , 2015, IEEE Antennas and Wireless Propagation Letters.

[36]  Vignesh Manohar,et al.  For Satellites, Think Small, Dream Big: A review of recent antenna developments for CubeSats. , 2017, IEEE Antennas and Propagation Magazine.

[37]  P.J. Soh,et al.  The study of meander line for microstrip and planar design , 2008, 2008 8th International Conference on ITS Telecommunications.

[38]  Richard E. Hodges,et al.  Novel deployable reflectarray antennas for CubeSat communications , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[39]  M. M. Mikulas,et al.  Inflatable Deployable Space Structures Technology Summary , 1998 .

[40]  S Pappa Richard,et al.  Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras , 2000 .

[41]  Robert Lange,et al.  Optical inter-satellite links based on homodyne BPSK modulation: heritage, status, and outlook , 2005, SPIE LASE.

[42]  S. Lee,et al.  The CubeSat Approach to Space Access , 2008, 2008 IEEE Aerospace Conference.

[43]  Jordi Puig-Suari,et al.  CubeSat: The Development and Launch Support Infrastructure for Eighteen Different Satellite Customers on One Launch , 2001 .

[44]  Stefano Pisa,et al.  High-Gain S-band Patch Antenna System for Earth-Observation CubeSat Satellites , 2015, IEEE Antennas and Wireless Propagation Letters.

[45]  M. J. Bentum,et al.  Inter-satellite links for cubesats , 2013, 2013 IEEE Aerospace Conference.

[46]  Eric Caillibot,et al.  Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite , 2006 .

[47]  Rainer Sandau,et al.  Status and trends of small satellite missions for Earth observation , 2010 .

[48]  R. E. Freeland,et al.  Development of flight hardware for a large, inflatable-deployable antenna experiment , 1996 .

[49]  Q. Chu,et al.  A Low-Profile Wide-Beamwidth Circularly-Polarized Antenna via Two Pairs of Parallel Dipoles in a Square Contour , 2015, IEEE Transactions on Antennas and Propagation.

[50]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[51]  William J. Blackwell,et al.  Hyperspectral Microwave Atmospheric Sounding , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[52]  H. Al‐Rizzo,et al.  A Compact Polyimide-Based UWB Antenna for Flexible Electronics , 2012, IEEE Antennas and Wireless Propagation Letters.

[53]  Karu P. Esselle,et al.  Wideband Circularly Polarized Stacked Microstrip Antennas , 2007, IEEE Antennas and Wireless Propagation Letters.

[54]  Michael A. Temple,et al.  An operational and performance overview of the IRIDIUM low earth orbit satellite system , 1999, IEEE Communications Surveys & Tutorials.

[55]  Elliott Coleshill,et al.  NTS—A nanosatellite space trial , 2010 .

[56]  J. A. Vilán,et al.  Flight results: Reliability and lifetime of the polymeric 3D-printed antenna deployment mechanism installed on Xatcobeo & Humsat-D , 2015 .

[57]  Sara Seager,et al.  Inflatable antenna for cubesat: fabrication, deployment and results of experimental tests , 2014, 2014 IEEE Aerospace Conference.

[58]  R. Hodges,et al.  CubeSat Deployable Ka-Band Mesh Reflector Antenna Development for Earth Science Missions , 2016, IEEE Transactions on Antennas and Propagation.

[59]  Simone Tanelli,et al.  CloudSat's Cloud Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Sungkyun Lim,et al.  A wideband, circularly polarized slot antenna , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[61]  Ziad S. Haddad,et al.  Raincube: A proposed constellation of precipitation profiling radars in CubeSat , 2014, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[62]  F. J. Mendieta,et al.  ATP subsystem for optical communications on a cubesat , 2015, 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS).

[63]  R. E. Freeland,et al.  Large Inflatable Deployable Antenna Flight Experiment Results , 1997 .

[64]  Mengu Cho,et al.  Compact Antenna for Small Satellite Applications [Antenna Applications Corner] , 2015, IEEE Antennas and Propagation Magazine.

[65]  Yu Luo,et al.  A Miniaturized Wide-Beamwidth Circularly Polarized Planar Antenna via Two Pairs of Folded Dipoles in a Square Contour , 2015, IEEE Transactions on Antennas and Propagation.

[67]  E. Glenn Lightsey,et al.  A Fractionated Space Weather Base at L5 using CubeSats and Solar Sails , 2014 .

[68]  Zhenghe Feng,et al.  A Wideband Sequential-Phase Fed Circularly Polarized Patch Array , 2014, IEEE Transactions on Antennas and Propagation.

[69]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[70]  J. Costantine,et al.  CubeSat Deployable Antenna Using Bistable Composite Tape-Springs , 2012, IEEE Antennas and Wireless Propagation Letters.

[71]  Wang You-wei,et al.  Design and fabrication of a folding-and-rolling reflectarray antenna , 2008, 2008 8th International Symposium on Antennas, Propagation and EM Theory.

[72]  Son Xuat Ta,et al.  Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications , 2013, IEEE Antennas and Wireless Propagation Letters.

[73]  Steve Beeby,et al.  Inkjet printed dipole antennas on textiles for wearable communications , 2013 .

[74]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[75]  Shkelzen Cakaj,et al.  The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation , 2014 .

[76]  Katsuhiro Nakagawa,et al.  Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory , 2012, Asia-Pacific Environmental Remote Sensing.