Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny.

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen particularly associated with the inherited disease cystic fibrosis (CF). Pseudomonas aeruginosa is well known to have a large and adaptable genome that enables it to colonise a wide range of ecological niches. Here, we have used a comparative genomics approach to identify changes that occur during infection of the CF lung. We used the mucoid phenotype as an obvious marker of host adaptation and compared these genomes to analyse SNPs, indels and islands within near-isogenic pairs. To commence the correction of the natural bias towards clinical isolates in genomics studies and to widen our understanding of the genomic diversity of P. aeruginosa, we included four environmental isolates in our analysis. Our data suggest that genome plasticity plays an important role in chronic infection and that the strains sequenced in this study are representative of the two major phylogenetic groups as determined by core genome SNP analysis.

[1]  T. Kirikae,et al.  Genome Sequence of Multidrug-Resistant Pseudomonas aeruginosa NCGM1179 , 2011, Journal of bacteriology.

[2]  P. Xu,et al.  Genome Sequence of Pseudomonas aeruginosa DQ8, an Efficient Degrader of n-Alkanes and Polycyclic Aromatic Hydrocarbons , 2012, Journal of bacteriology.

[3]  J. Wiener-Kronish,et al.  Single-Nucleotide-Polymorphism Mapping of the Pseudomonas aeruginosa Type III Secretion Toxins for Development of a Diagnostic Multiplex PCR System , 2003, Journal of Clinical Microbiology.

[4]  J. Fyfe,et al.  Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. , 1980, Journal of general microbiology.

[5]  Cuiqing Ma,et al.  Genome Sequence of the Lactate-Utilizing Pseudomonas aeruginosa Strain XMG , 2012, Journal of bacteriology.

[6]  N. Hall,et al.  Genetic Characterization Indicates that a Specific Subpopulation of Pseudomonas aeruginosa Is Associated with Keratitis Infections , 2011, Journal of Clinical Microbiology.

[7]  N. Segata,et al.  Genome Sequence of Pseudomonas aeruginosa PA45, a Highly Virulent Strain Isolated from a Patient with Bloodstream Infection , 2013, Genome Announcements.

[8]  M. Silby,et al.  Pseudomonas genomes: diverse and adaptable. , 2011, FEMS microbiology reviews.

[9]  Jonathan P. Allen,et al.  Draft Genome Sequence of the Pseudomonas aeruginosa Bloodstream Isolate PABL056 , 2012, Journal of bacteriology.

[10]  Hong-Yu Ou,et al.  Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18 , 2011, BMC Genomics.

[11]  P. Santos,et al.  Draft Genome Sequences of Two Pseudomonas aeruginosa Clinical Isolates with Different Antibiotic Susceptibilities , 2011, Journal of bacteriology.

[12]  T. Kuwahara,et al.  Complete Genome Sequence of Highly Multidrug-Resistant Pseudomonas aeruginosa NCGM2.S1, a Representative Strain of a Cluster Endemic to Japan , 2011, Journal of bacteriology.

[13]  N. Høiby,et al.  Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. , 2010, Microbiology.

[14]  A. Oliver,et al.  Draft Genome Sequence of VIM-2-Producing Multidrug-Resistant Pseudomonas aeruginosa ST175, an Epidemic High-Risk Clone , 2013, Genome Announcements.

[15]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[16]  Matthew Berriman,et al.  Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database , 2008, Bioinform..

[17]  Steven Salzberg,et al.  Gene-Boosted Assembly of a Novel Bacterial Genome from Very Short Reads , 2008, PLoS Comput. Biol..

[18]  D. Martin,et al.  Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor , 1993, Journal of bacteriology.

[19]  Torsten Seemann,et al.  Pseudomonas aeruginosa AES-1 Exhibits Increased Virulence Gene Expression during Chronic Infection of Cystic Fibrosis Lung , 2011, PloS one.

[20]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[21]  S. Mattingly,et al.  Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype , 1992, Infection and immunity.

[22]  G. Sundin,et al.  General and inducible hypermutation facilitate parallel adaptation in Pseudomonas aeruginosa despite divergent mutation spectra , 2012, Proceedings of the National Academy of Sciences.

[23]  Draft Genome Sequence of Pseudomonas aeruginosa Strain N002, Isolated from Crude Oil-Contaminated Soil from Geleky, Assam, India , 2013, Genome Announcements.

[24]  Garth D Ehrlich,et al.  Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. , 2012, Environmental microbiology.

[25]  Daniel H Huson,et al.  Drawing explicit phylogenetic networks and their integration into SplitsTree , 2008, BMC Evolutionary Biology.

[26]  K. Darling,et al.  Effects of Nitric Oxide on Pseudomonas aeruginosa Infection of Epithelial Cells from a Human Respiratory Cell Line Derived from a Patient with Cystic Fibrosis , 2003, Infection and Immunity.

[27]  Yongxiang Zhang,et al.  Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions , 2010, BMC Bioinformatics.

[28]  Mark J. Pallen,et al.  xBASE2: a comprehensive resource for comparative bacterial genomics , 2007, Nucleic Acids Res..

[29]  I. Kukavica-Ibrulj,et al.  Complete Genome Sequences of Three Pseudomonas aeruginosa Isolates with Phenotypes of Polymyxin B Adaptation and Inducible Resistance , 2012, Journal of bacteriology.

[30]  Lutz Wiehlmann,et al.  Pseudomonas aeruginosa Genomic Structure and Diversity , 2011, Front. Microbio..

[31]  J. Klockgether,et al.  152* Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs , 2011, Journal of Cystic Fibrosis.

[32]  Robert E W Hancock,et al.  Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. , 2013, Pathogens and disease.

[33]  B. Tümmler,et al.  Sequence Diversity of Pseudomonas aeruginosa: Impact on Population Structure and Genome Evolution , 2000, Journal of bacteriology.

[34]  G. Smith,et al.  Genomic Variation among Contemporary Pseudomonas aeruginosa Isolates from Chronically Infected Cystic Fibrosis Patients , 2012, Journal of bacteriology.

[35]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[36]  A. Oliver,et al.  Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[37]  Jianhua Liu,et al.  Genome Sequence of Pseudomonas aeruginosa Strain SJTD-1, a Bacterium Capable of Degrading Long-Chain Alkanes and Crude Oil , 2012, Journal of bacteriology.

[38]  P. H. Roy,et al.  Complete Genome Sequence of the Multiresistant Taxonomic Outlier Pseudomonas aeruginosa PA7 , 2010, PloS one.

[39]  Shannon L. Johnson,et al.  Draft Genome Sequence for Pseudomonas aeruginosa Strain PAO579, a Mucoid Derivative of PAO381 , 2012, Journal of bacteriology.

[40]  F. Rojo,et al.  Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235 , 2011, PloS one.

[41]  Daqiang Wu,et al.  Genome Sequence of Pseudomonas aeruginosa Strain AH16, Isolated from a Patient with Chronic Pneumonia in China , 2012, Journal of bacteriology.

[42]  E. Greenberg,et al.  Strain-dependent diversity in the Pseudomonas aeruginosa quorum-sensing regulon , 2012, Proceedings of the National Academy of Sciences.

[43]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. P. Speert,et al.  Genetic Adaptation of Pseudomonas aeruginosa to the Airways of Cystic Fibrosis Patients Is Catalyzed by Hypermutation , 2008, Journal of bacteriology.

[45]  Julian Parkhill,et al.  Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. , 2008, Genome research.

[46]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[47]  J. Klockgether,et al.  Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB , 2013, BMC Genomics.

[48]  Christina Toft,et al.  Evolutionary microbial genomics: insights into bacterial host adaptation , 2010, Nature Reviews Genetics.

[49]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[50]  M. Surette,et al.  Phenotypic Heterogeneity of Pseudomonas aeruginosa Populations in a Cystic Fibrosis Patient , 2013, PloS one.

[51]  Peixiang Ni,et al.  Draft Genome Sequence of Pseudomonas aeruginosa Strain ATCC 27853 , 2012, Journal of bacteriology.

[52]  J. Fothergill,et al.  Impact of Pseudomonas aeruginosa Genomic Instability on the Application of Typing Methods for Chronic Cystic Fibrosis Infections , 2010, Journal of Clinical Microbiology.