Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA

Abstract On 16–18 June 2008 the US National Snow and Ice Data Center held a GLIMS workshop in Boulder, CO, USA, focusing on formulating procedures and best practices for operational glacier mapping using satellite imagery. Despite the progress made in recent years, there still remain many cases where automatic delineation of glacier boundaries in satellite imagery is difficult, error prone or time-consuming. This workshop identified six themes for consideration by focus groups: (1) mapping clean ice and lakes; (2) mapping ice divides; (3) mapping debris-covered glaciers; (4) assessing changes in glacier area and elevation through comparisons with older data; (5) digital elevation model (DEM) generation from satellite stereo pairs; and (6) accuracy and error analysis. Talks presented examples and work in progress for each of these topics, and focus groups worked on compiling a summary of available algorithms and procedures to address and avoid identified hurdles. Special emphasis was given to establishing standard protocols for glacier delineation and analysis, creating illustrated tutorials and providing source code for available methods. This paper summarizes the major results of the 2008 GLIMS workshop, with an emphasis on definitions, methods and recommendations for satellite data processing. While the list of proposed methods and recommendations is not comprehensive and is still a work in progress, our goal here is to provide a starting point for the GLIMS regional centers as well as for the wider glaciological community in terms of documentation on possible pitfalls along with potential solutions.

[1]  David M. Mickelson Glacier science and environmental change , 2007 .

[2]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[3]  Roger G. Barry,et al.  Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery , 2006 .

[4]  P. G. Knight Glacier science and environmental change , 2006 .

[5]  Ron Kwok,et al.  Mass Balance of the Cryosphere: Remote-sensing techniques , 2004 .

[6]  Y. Arnaud,et al.  Biases of SRTM in high‐mountain areas: Implications for the monitoring of glacier volume changes , 2006 .

[7]  L. F. Curtis Remote sensing techniques , 1978, Nature.

[8]  Jeffrey S. Kargel,et al.  Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project , 2007, Comput. Geosci..

[9]  Roger G. Barry,et al.  The status of research on glaciers and global glacier recession: a review , 2006 .

[10]  Frank Paul,et al.  Calculation of glacier elevation changes with SRTM: is there an elevation-dependent bias? , 2008, Journal of Glaciology.

[11]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[12]  William F. Manley,et al.  Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes , 2007 .

[13]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[14]  A. Kääb,et al.  Glacier Monitoring From ASTER Imagery: Accuracy and Applications , 2001 .

[15]  J. Masek,et al.  Comparison of Late Pleistocene and Modern Glacier Extents in Central Nepal Based on Digital Elevation Data and Satellite Imagery , 1998, Quaternary Research.

[16]  M. F. Meier,et al.  Remote sensing of snow and ice. , 1980 .

[17]  T. Bolch,et al.  Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data , 2008 .

[18]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[19]  Thierry Toutin,et al.  Three-dimensional topographic mapping with ASTER stereo data in rugged topography , 2002, IEEE Trans. Geosci. Remote. Sens..

[20]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[21]  Manfred F. Buchroithner,et al.  Automated delineation of debris-covered glaciers based on ASTER data , 2007 .

[22]  Y. Arnaud,et al.  Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images , 2004 .

[23]  G. Suna,et al.  Validation of surface height from shuttle radar topography mission using shuttle laser altimeter , 2003 .

[24]  T. Albert,et al.  Evaluation of Remote Sensing Techniques for Ice-Area Classification Applied to the Tropical Quelccaya Ice Cap, Peru , 2002 .

[25]  W. Haeberli,et al.  Mapping the distribution of buried glacier ice--an example from Lago delle Locce, Monte Rosa, Italian Alps , 1986 .

[26]  Koji Fujita,et al.  Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya , 2008, Journal of Glaciology.

[27]  Helmut Rott,et al.  Thematic studies in alpine areas by means of polarimetric SAR and optical imagery , 1994 .

[28]  J. VanLooy,et al.  Glacial changes of five southwest British Columbia icefields, Canada, mid-1980s to 1999 , 2008, Journal of Glaciology.

[29]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[30]  Tobias Bolch,et al.  USING ASTER AND SRTM DEMS FOR STUDYING GLACIERS AND ROCKGLACIERS IN NORTHERN , 2004 .

[31]  J. G. Ferrigno,et al.  SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD: NORTH AMERICA. Richard S. Williams Jr and Jane G. Ferrigno (Editors). 2002. Washington, DC: US Government Printing Office (US Geological Survey Professional Paper 1386-J). xii+405 p, illustrated, soft cover. ISBN 0-607-98290-X. , 2004, Polar Record.

[32]  Howard Conway,et al.  Summer temperature profiles within supraglacial debris on Khumbu Glacier, Nepal , 2000 .

[33]  Mark F. Meier,et al.  GLACIERS AND THE CHANGING EARTH SYSTEM: A 2004 SNAPSHOT , 2010 .

[34]  E. Berthiera,et al.  Surface motion of mountain glaciers derived from satellite optical imagery , 2005 .

[35]  R. Braithwaite,et al.  Glacier mass balance: the first 50 years of international monitoring , 2002 .

[36]  Eric Rignot,et al.  Contribution of the Patagonia Icefields of South America to Sea Level Rise , 2003, Science.

[37]  Andreas Kääb,et al.  Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies , 2007 .

[38]  R. Bindschadler,et al.  Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893-2001) , 2003 .

[39]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[40]  Andreas Kääb,et al.  Rapid disintegration of Alpine glaciers observed with satellite data , 2004 .

[41]  Andreas Kääb,et al.  Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island , 2005, Annals of Glaciology.

[42]  Tobias Bolch,et al.  Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data , 2007 .

[43]  R. W. Sidjak Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data , 1999 .

[44]  Jeffrey S. Kargel,et al.  Multispectral imaging contributions to global land ice measurements from space , 2005 .

[45]  Rijan Bhakta Kayastha,et al.  Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season , 2000 .

[46]  J. M. Gregory,et al.  Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes , 1998, Nature.

[47]  Yves Arnaud,et al.  Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing , 2008, Journal of Glaciology.

[48]  Frank Paul,et al.  A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment , 2009, Journal of Glaciology.

[49]  Masamu Aniya,et al.  The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America , 1996 .

[50]  M. Zemp,et al.  Global glacier changes : facts and figures , 2008 .

[51]  Betty L. Hickman,et al.  SPOT Panchromatic Imagery and Neural Networks for Information Extraction in a Complex Mountain Environment , 1999 .

[52]  R. J. Braithwaite,et al.  A geometric glacier model for sea-level change calculations , 2000, Journal of Glaciology.

[53]  Anil V. Kulkarni,et al.  Glacial retreat in Himalaya using Indian remote sensing satellite data , 2006, SPIE Asia-Pacific Remote Sensing.

[54]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[55]  Jiancheng Shi,et al.  Sub-pixel lake mapping in Tibetan Plateau , 2004, IGARSS.

[56]  F. Paul,et al.  Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian Glacier Inventory data , 2002 .

[57]  Roberto Ranzi,et al.  Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[58]  Area change detection of glaciers , 2010 .

[59]  Michael P. Bishop,et al.  Terrain analysis and data modeling for alpine glacier mapping , 2001 .

[60]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[61]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[62]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[63]  Akira Hirano,et al.  Mapping from ASTER stereo image data: DEM validation and accuracy assessment , 2003 .

[64]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[65]  B. Menounos,et al.  An inventory and morphometric analysis of British Columbia glaciers, Canada , 2008, Journal of Glaciology.

[66]  Rijan Bhakta Kayastha,et al.  Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor , 2000 .

[67]  L. Hayman,et al.  Correspondence , 1992, Neuroradiology.

[68]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[69]  Thierry Toutin,et al.  ASTER DEMs for geomatic and geoscientific applications: a review , 2008 .

[70]  Dorothy K. Hall,et al.  Observations on glaciers in the eastern Austrian Alps using satellite data , 1994 .

[71]  H. Diaz,et al.  Threats to Water Supplies in the Tropical Andes , 2006, Science.

[72]  Frank Paul,et al.  Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models , 2008 .

[73]  C. Georges 20th-Century Glacier Fluctuations in the Tropical Cordillera Blanca, Perú , 2004 .

[74]  S. Raper,et al.  Low sea level rise projections from mountain glaciers and icecaps under global warming , 2006, Nature.

[75]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[76]  Andreas Kääb,et al.  Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers , 2004 .

[77]  Katrin Röhl,et al.  Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand , 2008, Journal of Glaciology.

[78]  Andreas Kääb,et al.  Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s , 2008 .

[79]  Arzhan B. Surazakov,et al.  Estimating volume change of mountain glaciers using SRTM and map-based topographic data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Hiroyuki Fujisada,et al.  ASTER DEM performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[81]  Arzhan B. Surazakov,et al.  Glacier changes in the Tien Shan as determined from topographic and remotely sensed data , 2007 .

[82]  Jeffrey S. Kargel,et al.  ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya , 2002, Annals of Glaciology.

[83]  J. Bamber,et al.  A review of remote sensing methods for glacier mass balance determination , 2007 .

[84]  Mark Cutler,et al.  Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy) , 2008 .

[85]  R. Barry,et al.  Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya , 2008, Sensors.

[86]  K. Itten,et al.  Accuracy assessment of automatically derived digital elevation models from aster data in mountainous terrain , 2005 .

[87]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[88]  Andreas Kääb,et al.  The new remote-sensing-derived Swiss glacier inventory: I. Methods , 2002, Annals of Glaciology.

[89]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[90]  S. Jain,et al.  ESTIMATION OF SNOW AND GLACIER-MELT CONTRIBUTION TO THE CHENAB RIVER, WESTERN HIMALAYA , 1997 .

[91]  Shi Jiancheng,et al.  Sub-pixel lake mapping in Tibetan Plateau , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[92]  A. Krupnik,et al.  Accuracy Assessment of Automatically Derived Digital Elevation Models from SPOT Images , 2000 .

[93]  Pratap Singh,et al.  Hydrological sensitivity of a large Himalayan basin to climate change , 2004 .

[94]  G. Casassa,et al.  Volume changes on Pio XI glacier, Patagonia: 1975-1995 , 1999 .

[95]  B. Menounos,et al.  Recent volume loss of British Columbian glaciers, Canada , 2007 .

[96]  Andreas Kääb,et al.  The new Swiss glacier inventory 2000 , 2008 .

[97]  Siri Jodha Singh Khalsa,et al.  The GLIMS geospatial glacier database: A new tool for studying glacier change ☆ , 2007 .

[98]  F. Paul,et al.  A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions , 2009, Annals of Glaciology.

[99]  Roger G. Barry,et al.  Late‐twentieth century changes in glacier extent in the Ak‐shirak Range, Central Asia, determined from historical data and ASTER imagery , 2003 .

[100]  Y. Weidmann,et al.  Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview , 2005 .

[101]  Paul E. Geissler,et al.  Glacier Changes in Southeast Alaska and Northwest British Columbia and Contribution to Sea Level Rise , 2007 .

[102]  Takashi Oguchi,et al.  Comparison of new and existing global digital elevation models: ASTER G‐DEM and SRTM‐3 , 2008 .

[103]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[104]  Sanjay K. Jain,et al.  Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalayan region , 2002 .

[105]  Jeffrey S. Kargel,et al.  Remote-sensing science and technology for studying glacier processes in high Asia , 2000, Annals of Glaciology.

[106]  Tobias Bolch,et al.  Glacier mapping in high mountains using DEMs, Landsat and ASTER data , 2005 .

[107]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .