The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material

This is an experimental study on the mechanical and structural gradients through the cuticle of Homarus americanus (American lobster). The exocuticle (outer layer) is characterized by a very fine woven structure of the fibrous chitin–protein matrix (twisted plywood structure) and by a high stiffness (8.5–9.5 GPa). The hardness increases within the exocuticle between the surface region (130 MPa) and the region close to the interface to the endocuticle (270 MPa). In the endocuticle, which is characterized by a much coarser twisted plywood structure, both the stiffness (3–4.5 GPa) and hardness (30–55 MPa) are much smaller than in the exocuticle. The transition in mechanical properties and structure between the exocuticle and endocuticle is abrupt. The differences underline the important role of the internal structure of the twisted plywood structure and of the interface between the two cuticle layers for the overall mechanical behavior of the exoskeleton. The excellent mechanical stability of the interface (irrespective of the change in the mechanical properties) is attributed to the fact that the structural change of the twisted plywood pattern across the interface consists only of a change of the stacking density of the chitin–protein layers. The observed gradients in stiffness and hardness through the cuticle thickness are interpreted in terms of honeycomb mechanics of the twisted plywood structure. The possible role of gradients in protein cross-linking and in the mineral content is also discussed.

[1]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[2]  J. Freeman,et al.  The Crustacean Integument: Morphology and Biochemistry , 1993 .

[3]  Himadri S. Gupta,et al.  On the role of interface polymers for the mechanics of natural polymeric composites , 2004 .

[4]  G. Fraenkel,et al.  A study of the physical and chemical properties of the insect cuticle , 1940, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[5]  S. Mann Biomineralization and biomimetic materials chemistry , 1995 .

[6]  Julian F. V. Vincent,et al.  Hydration and tanning in insect cuticle , 1987 .

[7]  Michael F. Ashby,et al.  The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  J. Blackwell,et al.  Structure of chitin-protein complexes: ovipositor of the ichneumon fly Megarhyssa. , 1980, Journal of molecular biology.

[9]  C. Coutant Thermal Niches of Striped Bass , 1986 .

[10]  D. Bliss The Biology of Crustacea , 1982 .

[11]  Neil F. Hadley,et al.  The Arthropod Cuticle , 1986 .

[12]  H. Hepburn,et al.  Mechanical properties of a crab shell , 1975 .

[13]  F. Vernberg,et al.  The biology of Crustacea: 8. Environmental adaptations , 1983 .

[14]  D. Carlström,et al.  THE CRYSTAL STRUCTURE OF α-CHITIN (POLY-N-ACETYL-D-GLUCOSAMINE) , 1957, The Journal of biophysical and biochemical cytology.

[15]  S. O. Andersen Biochemistry of Insect Cuticle , 1979 .

[16]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[17]  S. Koutsopoulos,et al.  Crystallization of calcite on chitin , 1997 .

[18]  J. J. Mecholsky,et al.  Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria , 1996 .

[19]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[20]  S. Weiner,et al.  Crystal organization in rat bone lamellae , 1991, FEBS letters.

[21]  M. Giraud‐Guille Fine structure of the chitin-protein system in the crab cuticle. , 1984, Tissue & cell.

[22]  W. Xu,et al.  A new atomic force microscopy technique for the measurement of the elastic properties of biological materials , 1994 .

[23]  J. Currey Biocomposites: micromechanics of biological hard tissues , 1996 .

[24]  M. Giraud‐Guille Plywood structures in nature , 1998 .

[25]  M. Ashby,et al.  The mechanical properties of natural materials. II. Microstructures for mechanical efficiency , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[27]  J. Currey,et al.  The failure of exoskeletons and endoskeletons , 1967, Journal of morphology.

[28]  M. G. M. Pryor,et al.  On the hardening of the ootheca of Blatta orientalis , 1940, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[29]  H. Lowenstam,et al.  Minerals formed by organisms. , 1981, Science.

[30]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.

[33]  S. Reynolds,et al.  The mechanical properties of the abdominal cuticle of Rhodnius larvae. , 1975, The Journal of experimental biology.

[34]  M. Epple Biomaterialien und Biomineralisation , 2003 .

[35]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[36]  K. Nakamae,et al.  Elastic modulus of the crystalline regions of chitin and chitosan , 1999 .

[37]  D. Carlstrom THE CRYSTAL STRUCTURE OF α-CHITIN (POLY-N-ACETYL-D-GLUCOSAMINE) , 1957 .

[38]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[39]  J. Tanaka,et al.  The chitosan prepared from crab tendon I: the characterization and the mechanical properties. , 2003, Biomaterials.

[40]  S. O. Andersen The stabilization of locust cuticle , 1981 .

[41]  S. Weiner,et al.  Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. , 1997, Bone.

[42]  L. Gibson Biomechanics of cellular solids. , 2005, Journal of biomechanics.

[43]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[44]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[45]  M. Giraud‐Guille,et al.  CHITIN CRYSTALS IN ARTHROPOD CUTICLES REVEALED BY DIFFRACTION CONTRAST TRANSMISSION ELECTRON MICROSCOPY , 1990 .

[46]  J. Vincent,et al.  The tanning of insect cuticle—A critical review and a revised mechanism , 1979 .

[47]  J. Vincent,et al.  Morphology and design of the extensible intersegmental membrane of the female migratory locust. , 1981, Tissue & cell.

[48]  Julian F. V. Vincent,et al.  Arthropod cuticle: A natural composite shell system , 2002 .

[49]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[50]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.