Light Logic and Polynomial Time Computation

[1]  Alexey P. Kopylov Decidability of linear affine logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[2]  Daniel Leviant Inductive definitions over finite structures , 1990 .

[3]  Vladimir Yu. Sazonov Polynomial Computability and Recursivity in Finite Domains , 1980, J. Inf. Process. Cybern..

[4]  N. Shankar,et al.  Decision problems for second-order linear logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[5]  Martin Hofmann Programming languages capturing complexity classes , 2000, SIGA.

[6]  Daniel Leivant,et al.  Intrinsic Theories and Computational Complexity , 1994, LCC.

[7]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[8]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[9]  Vom Fachbereich Mathematik TYPE SYSTEMS FOR POLYNOMIAL-TIME COMPUTATION , 1999 .

[10]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[11]  J. B. Wells,et al.  Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[12]  Stephen A. Cook,et al.  Feasibly constructive proofs and the propositional calculus (Preliminary Version) , 1975, STOC.

[13]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[14]  Samuel R. Buss A note on bootstrapping intuitionistic bounded arithmetic , 1993 .

[15]  J. B. Wells Typability and type checking in the second-order Λ-calculus are equivalent and undecidable (Preliminary Draft) , 1993 .

[16]  Richard B. White A consistent theory of attributes in a logic without contraction , 1993, Stud Logica.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Andre Scedrov,et al.  A brief guide to linear logic , 1990, Bull. EATCS.

[19]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[20]  Natarajan Shankar,et al.  Decision problems for propositional linear logic , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[21]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[22]  Jean-Yves Girard,et al.  On the meaning of logical rules I: syntax vs. semantics , 1998 .

[23]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[24]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[25]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[26]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[27]  Daniel Leivant,et al.  A Foundational Delineation of Poly-time , 1994, Inf. Comput..

[28]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[29]  Saharon Shelah,et al.  Fixed-point extensions of first-order logic , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[30]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[31]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[32]  Hiroakira Ono,et al.  Structural Rules and a Logical Hierarchy , 1990 .

[33]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[34]  Daniel Leivant,et al.  Stratified functional programs and computational complexity , 1993, POPL '93.

[35]  Johan van Benthem,et al.  Decidability and Nite Model Property of Substructural Logics , 1998 .

[36]  H.A.J.M. Schellinx,et al.  The noble art of linear decorating , 1994 .

[37]  Yves Lafont The Undecidability of Second Order Linear Logic Without Exponentials , 1996, J. Symb. Log..

[38]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[39]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[40]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[41]  Christos H. Papadimitriou,et al.  A note the expressive power of Prolog , 1985, Bull. EATCS.

[42]  Luca Roversi Light Affine Logic as a Programming Language: A First Contribution , 2000, Int. J. Found. Comput. Sci..

[43]  Kazushige Terui,et al.  Intuitionistic phase semantics is almost classical , 2006, Mathematical Structures in Computer Science.

[44]  Keisuke Terui Linear logical characterization of polyspace functions , 2000 .

[45]  M. H. Lob,et al.  Embedding First Order Predicate Logic in Fragments of Intuitionistic Logic , 1976, J. Symb. Log..

[46]  Vincent Danos,et al.  Linear Logic & Elementary Time , 1999 .

[47]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[48]  Jean-Yves Girard,et al.  A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.

[49]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[50]  Max I. Kanovich,et al.  Phase semantics for light linear logic , 2003, Theor. Comput. Sci..

[51]  Daniel Leivant,et al.  Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space , 1994, CSL.

[52]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[53]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[54]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[55]  R. Hindley The Principal Type-Scheme of an Object in Combinatory Logic , 1969 .

[56]  Patrick Baillot Stratified coherent spaces : a denotational semantics for Light Linear Logic ( extended abstract ) , 2000 .

[57]  Stephen A. Cook,et al.  Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.

[58]  Andrzej S. Murawski,et al.  Discreet Games, Light Affine Logic and PTIME Computation , 2000, CSL.

[59]  Daniel Leivant Applicative Control and Computational Complexity , 1999, CSL.

[60]  Yves Lafont The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..

[61]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[62]  Mitsuhiro Okada Phase Semantics for Higher Order Completeness, Cut-Elimination and Normalization Proofs , 1996, Electron. Notes Theor. Comput. Sci..

[63]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[64]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[65]  Luca Roversi A P-Time Completeness Proof for Light Logics , 1999, CSL.

[66]  Jean-Yves Girard Light Linear Logic , 1994, LCC.

[67]  Martin Hofmann,et al.  Realizability models for BLL-like languages , 2004, Theor. Comput. Sci..

[68]  V. N. Grisin PREDICATE AND SET-THEORETIC CALCULI BASED ON LOGIC WITHOUT CONTRACTIONS , 1982 .

[69]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[70]  Miyuki Shirahata A linear conservative extension of Zermelo-Fraenkel set theory , 1996, Stud Logica.

[71]  Daniel Leivant,et al.  Inductive Definitions Over Finite Structures , 1990, Inf. Comput..

[72]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[73]  Vincent Danos,et al.  On the linear decoration of intuitionistic derivations , 1995, Arch. Math. Log..

[74]  V. Michele Abrusci Sequent Calculus for Intuitionistic Linear Propositional Logic , 1990 .

[75]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[76]  Richard Statman,et al.  The typed λ-calculus is not elementary recursive , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[77]  Yuri Gurevich,et al.  Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[78]  Philip Wadler,et al.  A Syntax for Linear Logic , 1993, MFPS.

[79]  Mitsuhiro Okada Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..

[80]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[81]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[82]  Neil Immerman Languages which capture complexity classes , 1983, STOC '83.

[83]  Jean-Yves Girard On denotational completeness , 1996, Electron. Notes Theor. Comput. Sci..

[84]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[85]  Martin Hofmann An application of category-theoretic semantics to the characterisation of complexity classes using higher-order function algebras , 1997, Bull. Symb. Log..

[86]  A. Troelstra Lectures on linear logic , 1992 .

[87]  Kazushige Terui,et al.  The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.

[88]  J. Girard,et al.  Proofs and types , 1989 .