Light Logic and Polynomial Time Computation
暂无分享,去创建一个
[1] Alexey P. Kopylov. Decidability of linear affine logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[2] Daniel Leviant. Inductive definitions over finite structures , 1990 .
[3] Vladimir Yu. Sazonov. Polynomial Computability and Recursivity in Finite Domains , 1980, J. Inf. Process. Cybern..
[4] N. Shankar,et al. Decision problems for second-order linear logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[5] Martin Hofmann. Programming languages capturing complexity classes , 2000, SIGA.
[6] Daniel Leivant,et al. Intrinsic Theories and Computational Complexity , 1994, LCC.
[7] Stephen A. Cook,et al. A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.
[8] Kazushige Terui,et al. Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
[9] Vom Fachbereich Mathematik. TYPE SYSTEMS FOR POLYNOMIAL-TIME COMPUTATION , 1999 .
[10] Andrea Asperti. Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).
[11] J. B. Wells,et al. Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[12] Stephen A. Cook,et al. Feasibly constructive proofs and the propositional calculus (Preliminary Version) , 1975, STOC.
[13] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[14] Samuel R. Buss. A note on bootstrapping intuitionistic bounded arithmetic , 1993 .
[15] J. B. Wells. Typability and type checking in the second-order Λ-calculus are equivalent and undecidable (Preliminary Draft) , 1993 .
[16] Richard B. White. A consistent theory of attributes in a logic without contraction , 1993, Stud Logica.
[17] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[18] Andre Scedrov,et al. A brief guide to linear logic , 1990, Bull. EATCS.
[19] Jan Krajícek,et al. Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.
[20] Natarajan Shankar,et al. Decision problems for propositional linear logic , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[21] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[22] Jean-Yves Girard,et al. On the meaning of logical rules I: syntax vs. semantics , 1998 .
[23] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[24] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[25] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[26] Petr Hájek,et al. Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.
[27] Daniel Leivant,et al. A Foundational Delineation of Poly-time , 1994, Inf. Comput..
[28] Yehoshua Bar-Hillel,et al. The Intrinsic Computational Difficulty of Functions , 1969 .
[29] Saharon Shelah,et al. Fixed-point extensions of first-order logic , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[30] Daniel Leivant,et al. Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.
[31] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[32] Hiroakira Ono,et al. Structural Rules and a Logical Hierarchy , 1990 .
[33] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[34] Daniel Leivant,et al. Stratified functional programs and computational complexity , 1993, POPL '93.
[35] Johan van Benthem,et al. Decidability and Nite Model Property of Substructural Logics , 1998 .
[36] H.A.J.M. Schellinx,et al. The noble art of linear decorating , 1994 .
[37] Yves Lafont. The Undecidability of Second Order Linear Logic Without Exponentials , 1996, J. Symb. Log..
[38] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[39] Neil Immerman,et al. Languages that Capture Complexity Classes , 1987, SIAM J. Comput..
[40] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[41] Christos H. Papadimitriou,et al. A note the expressive power of Prolog , 1985, Bull. EATCS.
[42] Luca Roversi. Light Affine Logic as a Programming Language: A First Contribution , 2000, Int. J. Found. Comput. Sci..
[43] Kazushige Terui,et al. Intuitionistic phase semantics is almost classical , 2006, Mathematical Structures in Computer Science.
[44] Keisuke Terui. Linear logical characterization of polyspace functions , 2000 .
[45] M. H. Lob,et al. Embedding First Order Predicate Logic in Fragments of Intuitionistic Logic , 1976, J. Symb. Log..
[46] Vincent Danos,et al. Linear Logic & Elementary Time , 1999 .
[47] Andre Scedrov,et al. Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..
[48] Jean-Yves Girard,et al. A new constructive logic: classic logic , 1991, Mathematical Structures in Computer Science.
[49] Neil Immerman,et al. Relational Queries Computable in Polynomial Time , 1986, Inf. Control..
[50] Max I. Kanovich,et al. Phase semantics for light linear logic , 2003, Theor. Comput. Sci..
[51] Daniel Leivant,et al. Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space , 1994, CSL.
[52] Yves Lafont,et al. Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..
[53] Robin Milner,et al. A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..
[54] Moshe Y. Vardi. The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.
[55] R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic , 1969 .
[56] Patrick Baillot. Stratified coherent spaces : a denotational semantics for Light Linear Logic ( extended abstract ) , 2000 .
[57] Stephen A. Cook,et al. Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.
[58] Andrzej S. Murawski,et al. Discreet Games, Light Affine Logic and PTIME Computation , 2000, CSL.
[59] Daniel Leivant. Applicative Control and Computational Complexity , 1999, CSL.
[60] Yves Lafont. The Finite Model Property for Various Fragments of Linear Logic , 1997, J. Symb. Log..
[61] Martin Hofmann. Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..
[62] Mitsuhiro Okada. Phase Semantics for Higher Order Completeness, Cut-Elimination and Normalization Proofs , 1996, Electron. Notes Theor. Comput. Sci..
[63] Jean-Yves Girard,et al. Linear logic: its syntax and semantics , 1995 .
[64] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[65] Luca Roversi. A P-Time Completeness Proof for Light Logics , 1999, CSL.
[66] Jean-Yves Girard. Light Linear Logic , 1994, LCC.
[67] Martin Hofmann,et al. Realizability models for BLL-like languages , 2004, Theor. Comput. Sci..
[68] V. N. Grisin. PREDICATE AND SET-THEORETIC CALCULI BASED ON LOGIC WITHOUT CONTRACTIONS , 1982 .
[69] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[70] Miyuki Shirahata. A linear conservative extension of Zermelo-Fraenkel set theory , 1996, Stud Logica.
[71] Daniel Leivant,et al. Inductive Definitions Over Finite Structures , 1990, Inf. Comput..
[72] Vincent Danos,et al. A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.
[73] Vincent Danos,et al. On the linear decoration of intuitionistic derivations , 1995, Arch. Math. Log..
[74] V. Michele Abrusci. Sequent Calculus for Intuitionistic Linear Propositional Logic , 1990 .
[75] G. Gentzen. Untersuchungen über das logische Schließen. II , 1935 .
[76] Richard Statman,et al. The typed λ-calculus is not elementary recursive , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[77] Yuri Gurevich,et al. Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[78] Philip Wadler,et al. A Syntax for Linear Logic , 1993, MFPS.
[79] Mitsuhiro Okada. Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..
[80] Joseph R. Shoenfield,et al. Mathematical logic , 1967 .
[81] Neil D. Jones,et al. Computability and complexity - from a programming perspective , 1997, Foundations of computing series.
[82] Neil Immerman. Languages which capture complexity classes , 1983, STOC '83.
[83] Jean-Yves Girard. On denotational completeness , 1996, Electron. Notes Theor. Comput. Sci..
[84] Andrea Asperti,et al. Intuitionistic Light Affine Logic , 2002, TOCL.
[85] Martin Hofmann. An application of category-theoretic semantics to the characterisation of complexity classes using higher-order function algebras , 1997, Bull. Symb. Log..
[86] A. Troelstra. Lectures on linear logic , 1992 .
[87] Kazushige Terui,et al. The finite model property for various fragments of intuitionistic linear logic , 1999, Journal of Symbolic Logic.
[88] J. Girard,et al. Proofs and types , 1989 .