^57Fe Mössbauer Spectrometry to explore natural and artificial nanostructures

Since its discovery in the middle of the twentieth century, 57Fe Mössbauer spectrometry has been increasingly applied to a variety of scientific topics, including fundamental and industrial ones, going from basic chemistry, materials science, earth sciences to biology and archeology. Indeed, its high atomic scale sensitivity to local order combined with easy and low cost facilities have convinced scientists to use this tool as a nice complement to other techniques. This article serves as an introduction to this special issue dedicated to the application of Mössbauer spectrometry to the study of both laboratory-made and natural materials, each with relevant specific properties: it shows that the significant contribution of this local probe technique is underlined for each type of material, allowing a better understanding of the synthesis mechanisms, the chemical and/or physical properties.

[1]  V. Sharma,et al.  Carbon Quantum Dot-Titanium Doped Strontium Ferrite Nanocomposite: Visible Light Active Photocatalyst to Degrade Nitroaromatics , 2022, Catalysts.

[2]  A. Farkas,et al.  Thermally Induced Solid-Phase Quasi-Intramolecular Redox Reactions of [Hexakis(urea-O)iron(III)] Permanganate: An Easy Reaction Route to Prepare Potential (Fe,Mn)Ox Catalysts for CO2 Hydrogenation , 2022, Inorganic chemistry.

[3]  V. Sharma,et al.  Hierarchical Nanoflowers of MgFe2O4, Bentonite and B-,P- Co-Doped Graphene Oxide as Adsorbent and Photocatalyst: Optimization of Parameters by Box–Behnken Methodology , 2022, International journal of molecular sciences.

[4]  J. Tarascon,et al.  Fluorinated Materials as Positive Electrodes for Li- and Na-Ion Batteries. , 2022, Chemical reviews.

[5]  V. Sharma,et al.  Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal-Organic Frameworks: Key Insights into the Degradation Mechanisms. , 2022, Journal of the American Chemical Society.

[6]  J. Torrent,et al.  Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. , 2022, Chemosphere.

[7]  C. Chisholm,et al.  Magnetic Anisotropy and Microstructure in Electrodeposited Quaternary Sn-Fe-Ni-Co Alloys with Amorphous Character , 2022, Materials.

[8]  K. Kovács,et al.  New aspects of the photodegradation of iron(III) citrate: spectroscopic studies and plant-related factors , 2022, Photochemical & Photobiological Sciences.

[9]  V. Sharma,et al.  Magnesium ferrite-nitrogen–doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III) , 2022, Environmental Science and Pollution Research.

[10]  Honghong Yi,et al.  Synthesis, characterization and application of Fe-zeolite: A review , 2022, Applied Catalysis A: General.

[11]  V. Sharma,et al.  Biochar as a novel carbon-negative electron source and mediator: electron exchange capacity (EEC) and environmentally persistent free radicals (EPFRs): a review , 2022, Chemical Engineering Journal.

[12]  S. Musić,et al.  Forced hydrolysis of FeCl3 solutions in the presence of guanylurea phosphate , 2021, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[13]  Drew E. Latta,et al.  Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles , 2021, Metrologia.

[14]  S. Kubuki,et al.  Local structure, glass transition, structural relaxation, and crystallization of functional oxide glasses investigated by Mössbauer spectroscopy and DTA , 2021, Journal of Materials Science: Materials in Electronics.

[15]  Tao Zhang,et al.  In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis , 2021, Chem Catalysis.

[16]  Yixiao Dong,et al.  Progress in Iron Oxides Based Nanostructures for Applications in Energy Storage , 2021, Nanoscale Research Letters.

[17]  B. Costa,et al.  57Fe Mössbauer Analysis of Meteorites and Tektites , 2021 .

[18]  V. Sharma,et al.  Synthesis of CaFe2O4-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants , 2021, Nanomaterials.

[19]  K. Kovács,et al.  Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages , 2021, Ore Geology Reviews.

[20]  R. Hermann,et al.  Structure and electronic properties of CaAl12Fe O19 hibonites , 2020 .

[21]  Zhangxiong Wu,et al.  Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review , 2020 .

[22]  S. Ghosh,et al.  Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition , 2020, Nanotechnology.

[23]  R. Bayazitov,et al.  High-intensity pulsed ion beam treatment of amorphous iron-based metal alloy , 2020, Journal of Physics: Conference Series.

[24]  Yoshio Kobayashi,et al.  Metastable iron carbide thin films produced by pulsed laser deposition of iron in methane atmosphere , 2019 .

[25]  K. Rosso,et al.  Iron Redox Chemistry and Its Environmental Impact: A Virtual Special Issue , 2019 .

[26]  V. Sharma,et al.  Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review. , 2018, Chemosphere.

[27]  R. Walton,et al.  MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework , 2018, Israel Journal of Chemistry.

[28]  Xuefeng Zhu,et al.  Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts , 2018 .

[29]  U. Schwertmann,et al.  Iron Oxides , 2003, SSSA Book Series.

[30]  E. Kemnitz,et al.  Aluminium fluoride – the strongest solid Lewis acid: structure and reactivity , 2017 .

[31]  V. Maisonneuve,et al.  Crystal chemistry and selected physical properties of inorganic fluorides and oxide-fluorides. , 2015, Chemical reviews.

[32]  I. N. Zakharova,et al.  Mössbauer studies of magnetite nanoparticles , 2014, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques.

[33]  M. Zaki,et al.  Particle characteristics and reduction behavior of synthetic magnetite , 2014 .

[34]  S. Musić,et al.  57Fe Mössbauer Spectroscopy In The Investigation of The Precipitation of Iron Oxides , 2013 .

[35]  K. Kovács,et al.  Mössbauer Spectroscopy In Biological and Biomedical Research , 2013 .

[36]  A. Inoue,et al.  Iron-based bulk metallic glasses , 2013 .

[37]  J. Greneche The Contribution of 57 Fe Mössbauer Spectrometry to Investigate Magnetic Nanomaterials , 2013 .

[38]  M. Sasidharan,et al.  Synthesis of magnetic α-Fe2O3 and Fe3O4 hollow nanospheres for sustained release of ibuprofen , 2012 .

[39]  K. Kovács,et al.  Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. , 2012, Journal of agricultural and food chemistry.

[40]  V. Sharma,et al.  Synthesis and photocatalytic activity of ferrites under visible light: A review , 2012 .

[41]  A. Volinsky,et al.  Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation , 2011 .

[42]  M. Vázquez,et al.  Magnetic Iron Oxide Nanoparticles in 10−40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties , 2011 .

[43]  M. Lü,et al.  Morphology-tunable fibers with Fe3O4 nanocrystals fabricated through assembly. , 2010, Journal of colloid and interface science.

[44]  G. Papaefthymiou The Mössbauer and magnetic properties of ferritin cores. , 2010, Biochimica et biophysica acta.

[45]  J. Briat,et al.  Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes , 2009, Plant and Soil.

[46]  Qian Gao,et al.  The study of novel Fe3O4@γ-Fe2O3 core/shell nanomaterials with improved properties , 2009 .

[47]  K. Kovács,et al.  Effect of cadmium on iron uptake in cucumber roots: A Mössbauer-spectroscopic study , 2009, Plant and Soil.

[48]  K. Kovács,et al.  Mössbauer investigation of iron uptake in wheat , 2008 .

[49]  J. Greneche,et al.  Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles , 2008 .

[50]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[51]  K. Kovács,et al.  Investigation of iron pools in cucumber roots by Mössbauer spectroscopy: direct evidence for the Strategy I iron uptake mechanism , 2008, Planta.

[52]  J. Greneche,et al.  Phosphate Adsorption Properties of Magnetite-Based Nanoparticles , 2007 .

[53]  Libor Machala,et al.  Amorphous iron(III) oxide--a review. , 2007, The journal of physical chemistry. B.

[54]  J. Greneche,et al.  Hydrothermal synthesis of monodisperse magnetite nanoparticles , 2006 .

[55]  J. Cashion,et al.  Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization , 2003 .

[56]  J. Greneche,et al.  Characterization of a natural magnetite , 2003 .

[57]  J. Jumas,et al.  57Fe Mössbauer study of iron distribution in a kaolin raw material: influence of the temperature and the heating rate , 2002 .

[58]  P. Blancharta,et al.  Fe Mössbauer study of iron distribution in a kaolin raw material: influence of the temperature and the heating rate , 2002 .

[59]  T. Keménya,et al.  Structure and magnetic properties of nanocrystalline soft ferromagnets , 2001 .

[60]  D. C. Gordon,et al.  The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants , 2000 .

[61]  M. Kopcewicz MOSSBAUER STUDY OF NANOCRYSTALLINE ALLOYS , 1999 .

[62]  A. Slawska-Waniewska,et al.  Mössbauer studies of FeZrB(Cu) amorphous alloys , 1996 .

[63]  N. Chasteen,et al.  Molecular aspects of iron uptake and storage in ferritin , 1995 .

[64]  Zheng Hu,et al.  Ultrafine amorphous Fe-Ni-B and Fe-P-B particles , 1993 .

[65]  J. Greneche,et al.  Mössbauer Effect Studies of Iron Fluorides , 1993 .

[66]  D. G. Lewis,et al.  Characterization of FeOOH polymorphs and ferrihydrite using low-temperature, applied-field, Mössbauer spectroscopy , 1992, Clay Minerals.

[67]  R. Xu,et al.  THERMAL-STABILITY AND MICROSTRUCTURE OF THE ELECTRODEPOSITED AMORPHOUS FE80P18YB2 ALLOY , 1990 .

[68]  Y. Yoshizawa,et al.  Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure , 1990 .

[69]  J. Coey Magnetic Properties of Iron in Soil Iron Oxides and Clay Minerals , 1988 .

[70]  S. Yamauchi,et al.  Paramagnetic relaxation effects on Mössbauer spectra of hexakis/alkylurea/iron/III/ complexes , 1987 .

[71]  Udo Schwertmann,et al.  Iron in Soils and Clay Minerals , 1987 .

[72]  L. Schlapbach,et al.  Mössbauer investigations of the changes in the magnetic properties of amorphous iron rich Fe-Zr alloys with hydrogenation , 1984 .

[73]  S. Yamauchi,et al.  Mössbauer spectroscopic study of the magnetic relaxation in tris(β-diketonato)iron(III) complexes , 1983 .

[74]  U. Gonser,et al.  Mössbauer spectroscopy applied to amorphous metals , 1983 .

[75]  J. Greneche,et al.  On the texture problem in Mossbauer spectroscopy , 1982 .

[76]  F. Litterst Mössbauer studies of crystallization, glass transition and structural relaxation in non-metallic amorphous materials , 1982 .

[77]  F. Varret,et al.  Electric field gradients in AFeIIIF4 structures: Calculations for the polarizable point charge model and Mössbauer data , 1982 .

[78]  G. Galeazzi,et al.  Mössbauer study of some iron(III) complexes with urea type ligands and the crystal structure of hexakisdimethylureairon(III) perchlorate , 1981 .

[79]  U. Russo,et al.  Characterization of some high-spin iron(III) complexes with urea derivaties. Crystal structure of diaquatetrakis(perhydropyrimidin-2-one)iron trichloride dihydrate and of perhydrophyrimidin-2-one , 1980 .

[80]  A. Amamou Mosslbauer Effect and Short-Range Order in Fe-P-B and Fe-P-C Amorphous Alloys , 1979, August 1979.

[81]  A. Amamou Mössbauer Effect and Short-Range Order in FePB and FePC Amorphous Alloys† , 1979 .

[82]  U. Russo,et al.  Mössbauer characterization of some new high-spin iron complexes with urea and thiourea derivatives , 1979 .

[83]  C. Janot,et al.  Mossbauer spectra analysis in amorphous system studies , 1976 .

[84]  J. Logan,et al.  A Mössbauer study of amorphous iron-phosphorus alloys , 1976 .

[85]  J. Coey AMORPHOUS SOLIDS : A REVIEW OF THE APPLICATIONS OF THE MÖSSBAUER EFFECT , 1974 .

[86]  W. Kündig,et al.  Electron hopping in magnetite , 1969 .

[87]  M. Kaplan,et al.  Paramagnetic and Electric Quadrupole Hyperfine Interactions of Ferric Ions in Ice and FeCl3·6H2O , 1968 .

[88]  R. Housley Investigation of Magnetic Relaxation Effects in Fe(NO3)3·9H2O and NH4Fe(SO4)2·12H2O by Mössbauer‐Effect Spectroscopy , 1967 .

[89]  J. Wignall Mössbauer Line Broadening in Trivalent Iron Compounds , 1966 .