Thermodynamics of fluid mixtures near to and far from the critical region

A theory for an equation of state for simple fluid mixtures valid both near to and far from critical points is presented. The base equation of state obtained from integral-equation theory using the mean-spherical approximation is used to compute the contribution of short-wavelength fluctuations to the free energy of the fluid mixture. Wilson's phase space cell approximation, as extended by White, is used to compute the contribution of long-wavelength fluctuations. The resulting theory possesses nonclassic critical exponents similar to those observed experimentally. Far from the critical region, where long-wavelength fluctuations are not important, the theory reduces to that corresponding to the base equation of state. The complete theory is used to represent the thermodynamic properties and phase behavior of binary mixtures of methane, carbon dioxide, and n-butane. In the critical region, agreement with experiment is dramatically improved upon, adding to the base equation of state corrections from long-wavelength fluctuations.

[1]  J. A. White,et al.  Renormalization Group Theory for Fluids to Greater Density Distances from the Critical Point , 1998 .

[2]  Leo Lue,et al.  Renormalization-group corrections to an approximate free-energy model for simple fluids near to and far from the critical region , 1998 .

[3]  G. White,et al.  Thermophysical properties of some key solids: An update , 1997 .

[4]  Jan V. Sengers,et al.  Prediction of thermodynamic and transport properties in the one-phase region of methane + n-hexane mixtures near their critical end points , 1997 .

[5]  S. B. Kiselev Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region , 1997 .

[6]  S. B. Kiselev,et al.  Crossover equation of state for the thermodynamic properties of mixtures of methane and ethane in the critical region , 1996 .

[7]  J. Sengers,et al.  Erratum to ``A general isomorphism approach to thermodynamic and transport properties of binary fluid mixtures near critical points'' [Physica A (1995) 277] , 1996 .

[8]  J. Sengers,et al.  A GENERAL ISOMORPHISM APPROACH TO THERMODYNAMIC AND TRANSPORT PROPERTIES OF BINARY FLUID MIXTURES NEAR CRITICAL POINTS , 1995 .

[9]  Sheng Zhang,et al.  Renormalization theory of nonuniversal thermal properties of fluids , 1995 .

[10]  Anisimov,et al.  Crossover between vapor-liquid and consolute critical phenomena. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Yiping Tang,et al.  Analytical solution of the Ornstein-Zernike equation for mixtures , 1995 .

[12]  Yiping Tang,et al.  An analytical analysis of the square‐well fluid behaviors , 1994 .

[13]  Yiping Tang,et al.  A new solution of the Ornstein–Zernike equation from the perturbation theory , 1993 .

[14]  L. Reatto,et al.  Differential approach to the theory of fluids in the presence of two- and three-body potentials and study of the critical point of krypton , 1993 .

[15]  Benjamin C.-Y. Lu,et al.  Simultaneous determination of vapor-liquid equilibrium and molar volumes for coexisting phases up to the critical temperature with a static method , 1993 .

[16]  L. Reatto,et al.  The order parameter and crossovers at the critical points of binary mixtures , 1993 .

[17]  Sheng Zhang,et al.  Renormalization group theory for fluids , 1993 .

[18]  S. B. Kiselev,et al.  Spinodal and kinetic boundary of metastable region , 1993 .

[19]  Tang,et al.  Global thermodynamic behavior of fluid mixtures in the critical region. , 1992, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  S. B. Kiselev,et al.  An improved parametric crossover model for the thermodynamic properties of fluids in the critical region , 1993 .

[21]  Junhang Dong,et al.  High pressure vapor liquid equilibria at 293 K for systems containing nitrogen, methane and carbon dioxide , 1992 .

[22]  Ivanchenko,et al.  Generalized renormalization scheme in the Ginzburg-Landau-Wilson model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  Liming W. Salvino,et al.  Calculation of density fluctuation contributions to thermodynamic properties of simple fluids , 1992 .

[24]  A. Lisyansky,et al.  New renormalization procedure for eliminating redundant operators , 1992 .

[25]  Reatto,et al.  Microscopic approach to critical phenomena in binary fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[26]  S. B. Kiselev,et al.  Universal crossover behavior of fluids and fluid mixtures in the critical region , 1991 .

[27]  L. Reatto,et al.  Differential approach to the theory of fluids. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  Chen,et al.  Global thermodynamic behavior of fluids in the critical region. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[29]  R. Bishop,et al.  Quantum many-particle systems , 1990 .

[30]  P. Traub,et al.  High-pressure phase equilibria of the system CO2—water—acetone measured with a new apparatus , 1990 .

[31]  A. J. Kidnay,et al.  Vapor-liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K.☆ , 1989 .

[32]  J. Zollweg,et al.  Vapor-liquid equilibrium in the binary system carbon dioxide + n-butane , 1989 .

[33]  S. Sandler,et al.  High-pressure vapor-liquid equilibria involving mixtures of nitrogen, carbon dioxide, and n-butane , 1989 .

[34]  L. A. Weber,et al.  Simple apparatus for vapor-liquid equilibrium measurements with data for the binary systems of carbon dioxide with n-butane and isobutane , 1989 .

[35]  J. Ely,et al.  Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane , 1987 .

[36]  W. Wagner,et al.  Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane , 1986 .

[37]  Reatto,et al.  Hierarchical reference theory of fluids and the critical point. , 1985, Physical review. A, General physics.

[38]  L. Reatto,et al.  Liquid-state theory for critical phenomena , 1984 .

[39]  Taher A. Al-Sahhaf,et al.  Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system , 1983 .

[40]  A. Kidnay,et al.  Liquid-vapor equilibriums at 270.00 K for systems containing nitrogen, methane, and carbon dioxide , 1978 .

[41]  R. Kobayashi,et al.  Vapor-liquid equilibrium of the methane-carbon dioxide system at low temperatures , 1978 .

[42]  P. S. Chappelear,et al.  Dew point study in the vapor--liquid region of the methane--carbon dioxide system , 1976 .

[43]  D. Robinson,et al.  Equilibrium-phase properties of carbon dioxide-butane and nitrogen-hydrogen sulfide systems at subambient temperatures , 1976 .

[44]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[45]  W. R. Anderson,et al.  Liquid-vapor equilibria at 250.00.deg.K for systems containing methane, ethane, and carbon dioxide , 1976 .

[46]  M. Hirata,et al.  BINARY VAPOR-LIQUID EQUILIBRIA OF CARBON DIOXIDE-LIGHT HYDROCARBONS AT LOW TEMPERATURE , 1974 .

[47]  Leroy C. Kahre Low-temperature K data for methane-n-pentane , 1974 .

[48]  P. S. Chappelear,et al.  Dew-point loci for methane-n-pentane binary system , 1974 .

[49]  R. Griffiths,et al.  Thermodynamic Properties near the Liquid-Vapor Critical Line in Mixtures of He 3 and He 4 , 1973 .

[50]  M. Grover Critical Exponents for theX−YModel , 1972 .

[51]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. I. General Theory and Variational Formulation of the Mean Spherical Model and Hard Sphere Percus‐Yevick Equations , 1972 .

[52]  David Chandler,et al.  Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids , 1972 .

[53]  L. Kadanoff,et al.  Critical Exponents for the Heisenberg Model , 1972 .

[54]  Michael E. Fisher,et al.  Critical Exponents in 3.99 Dimensions , 1972 .

[55]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[56]  K. Wilson Renormalization Group and Critical Phenomena. II. Phase-Space Cell Analysis of Critical Behavior , 1971 .

[57]  Yasuhiko Arai,et al.  THE EXPERIMENTAL DETERMINATION OF THE P-V-T-X RELATIONS FOR THE CARBON DIOXIDE-NITROGEN AND THE CARBON DIOXIDE-METHANE SYSTEMS , 1971 .

[58]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[59]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[60]  David Chandler,et al.  Mode Expansion in Equilibrium Statistical Mechanics. II. A Rapidly Convergent Theory of Ionic Solutions , 1971 .

[61]  H. C. Andersen,et al.  Mode Expansion in Equilibrium Statistical Mechanics. I. General Theory and Application to the Classical Electron Gas , 1970 .

[62]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[63]  R. H. Wang,et al.  Methane-n-Butane System in the Two-Phase Region. , 1962 .

[64]  B. Sage,et al.  The n-Butane–Carbon Dioxide System , 1949 .

[65]  B. Sage,et al.  Phase Equilibrium in Hydrocarbon Systems.Methane–Carbon Dioxide System in the Gaseous Region , 1944 .

[66]  B. Sage,et al.  Phase Equilibria in Hydrocarbon Systems , 1936 .