Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms

Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT) loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.

[1]  Wen-Hsiung Li Unbiased estimation of the rates of synonymous and nonsynonymous substitution , 2006, Journal of Molecular Evolution.

[2]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[3]  G. Butler,et al.  Evolution of the MAT locus and its Ho endonuclease in yeast species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Haber,et al.  Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  A. Paterson,et al.  A primitive Y chromosome in papaya marks incipient sex chromosome evolution , 2004, Nature.

[6]  M. Daboussi Fungal transposable elements and genome evolution , 2004, Genetica.

[7]  A. E. Tsong,et al.  Evolution of a Combinatorial Transcriptional Circuit A Case Study in Yeasts , 2003, Cell.

[8]  R. Poulter,et al.  Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. , 2003, Microbiology.

[9]  J. Heitman,et al.  Recapitulation of the Sexual Cycle of the Primary Fungal Pathogen Cryptococcus neoformans var. gattii: Implications for an Outbreak on Vancouver Island, Canada , 2003, Eukaryotic Cell.

[10]  T. Graves,et al.  The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes , 2003, Nature.

[11]  Steve Rozen,et al.  Abundant gene conversion between arms of palindromes in human and ape Y chromosomes , 2003, Nature.

[12]  N. Takahata,et al.  The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[14]  David Botstein,et al.  Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Heitman,et al.  Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes , 2002, Eukaryotic Cell.

[16]  T. Boekhout,et al.  (1557) Proposal to conserve the name Cryptococcus gattii against C. hondurianus and C. bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae) , 2002 .

[17]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[18]  J. Heitman,et al.  Genetics of Cryptococcus neoformans. , 2002, Annual review of genetics.

[19]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[20]  R. Poulter,et al.  The diversity of retrotransposons in the yeast Cryptococcus neoformans , 2001, Yeast.

[21]  B. Barrell,et al.  Prevalence of small inversions in yeast gene order evolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Kämper,et al.  A protein with similarity to the human retinoblastoma binding protein 2 acts specifically as a repressor for genes regulated by the b mating type locus in Ustilago maydis , 2000, Molecular microbiology.

[23]  T. G. Mitchell,et al.  Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans , 2000, Molecular ecology.

[24]  R. Wing,et al.  A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. , 2000, Nucleic acids research.

[25]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[26]  Toshimichi Ikemura,et al.  Codon usage tabulated from international DNA sequence databases: status for the year 2000 , 2000, Nucleic Acids Res..

[27]  J. Sherwood,et al.  The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Page,et al.  Four evolutionary strata on the human X chromosome. , 1999, Science.

[29]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[30]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[31]  L. Casselton,et al.  Molecular Genetics of Mating Recognition in Basidiomycete Fungi , 1998, Microbiology and Molecular Biology Reviews.

[32]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[33]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[34]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[35]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[36]  C. Staben,et al.  Mating type in filamentous fungi. , 1997, Annual review of genetics.

[37]  J. Haber,et al.  A 700 bp cis-Acting Region Controls Mating-Type Dependent Recombination Along the Entire Left Arm of Yeast Chromosome III , 1996, Cell.

[38]  R. W. Davis,et al.  Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. , 1996, Nucleic Acids Research.

[39]  B. Wickes,et al.  Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Kämper,et al.  Control of mating and development in Ustilago maydis. , 1995, Current opinion in genetics & development.

[41]  R. Wing,et al.  Construction and characterization of a bovine bacterial artificial chromosome library. , 1995, Genomics.

[42]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[43]  Wayne P. Maddison,et al.  Macclade: Analysis of Phylogeny and Character Evolution/Version 3 , 1992 .

[44]  S. M. Honigberg,et al.  Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. , 1992, Genetics.

[45]  B. Wickes,et al.  Genetic association of mating types and virulence in Cryptococcus neoformans , 1992, Infection and immunity.

[46]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[47]  Ira Herskowitz,et al.  A regulatory hierarchy for cell specialization in yeast , 1989, Nature.

[48]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[49]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[50]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[51]  D. Hickey Selfish DNA: a sexually-transmitted nuclear parasite. , 1982, Genetics.

[52]  I. Herskowitz,et al.  Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast , 1979, Cell.