Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory

Abstract This study presents fully coupled ordinary state based peridynamic (PD) model for of laminated composites. The formulation includes coupling of both thermal and mechanical fields. In order to verify the proposed model, numerical simulations for benchmark problems are carried out and their results are compared with the ones from ANSYS solutions. First, the thermomechanical behaviour of the laminated composites subjected to both uniform and linear temperature changes are tested for single and multi-layer composites. Then, fully coupled thermo-mechanical formulations are validated for laminated composites subjected to pressure shock. Finally, the crack propagation paths and temperature distributions are predicted for shock loading conditions. In conclusion, the present PD model is well suited for solving fully coupled thermomechanical problems for laminated composites including crack initiations and propagations.

[1]  Erkan Oterkus,et al.  Peridynamics for Failure Prediction in Composites , 2012 .

[2]  Booker,et al.  Finite Element Analysis of Coupled Thermoelasticity , 1987 .

[3]  M. Reza Eslami,et al.  Thermal Stresses—Advanced Theory and Applications , 2008, Solid Mechanics and Its Applications.

[4]  E. Madenci,et al.  Peridynamic theory for progressive damage prediction in center-cracked composite laminates , 2009 .

[5]  M. Biot Thermoelasticity and Irreversible Thermodynamics , 1956 .

[6]  Erdogan Madenci,et al.  Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics , 2014 .

[7]  Selda Oterkus,et al.  Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems , 2018 .

[8]  O. W. Dillon,et al.  The experimental technique for observing the temperatures due to the coupled thermoelastic effect , 1966 .

[9]  Selda Oterkus,et al.  Ordinary state-based peridynamics for thermoviscoelastic deformation , 2017 .

[10]  K. Prewo,et al.  High-strength silicon carbide fibre-reinforced glass-matrix composites , 1980 .

[11]  J. L. Nowinski,et al.  Theory of thermoelasticity with applications , 1978 .

[12]  Selda Oterkus,et al.  Peridynamic modeling of fuel pellet cracking , 2017 .

[13]  Erdogan Madenci,et al.  The Finite Element Method and Applications in Engineering Using ANSYS , 2007 .

[14]  Selda Oterkus,et al.  Peridynamics for the solution of multiphysics problems , 2015 .

[15]  Erkan Oterkus,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[16]  S. Oterkus,et al.  Dynamic propagation of a macrocrack interacting with parallel small cracks , 2017 .

[17]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[18]  H. Sherief On generalized thermoelasticity , 1980 .

[19]  Prasad B. Chunchu,et al.  Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools , 2006 .

[20]  Erkan Oterkus,et al.  Peridynamic modeling of composite laminates under explosive loading , 2016 .

[21]  S. Silling,et al.  Peridynamics for analysis of failure in advanced composite materials , 2015 .

[22]  Erkan Oterkus,et al.  Peridynamic Theory for Damage Initiation and Growth in Composite Laminate , 2011 .

[23]  H. Ene On linear thermoelasticity of composite materials , 1983 .

[24]  G. Venkateswara Rao,et al.  Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates , 2001 .

[25]  Erkan Oterkus,et al.  Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures , 2010 .

[26]  Erdogan Madenci,et al.  Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot , 2012 .

[27]  Alan T. Nettles,et al.  Basic mechanics of laminated composite plates , 1994 .

[28]  J. Berthelot Classical Laminate Theory , 1999 .

[29]  P. Stanley Applications and potential of thermoelastic stress analysis , 1997 .

[30]  M. Ayatollahi,et al.  Analysis of a new specimen for mixed mode fracture tests on brittle materials , 2009 .

[31]  Erdogan Madenci,et al.  An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory , 2010 .

[32]  S. Oterkus,et al.  Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects , 2018 .

[33]  P. Sinha,et al.  Thermal shocks in composite plates: a coupled thermoelastic finite element analysis , 1996 .

[34]  Tim Schmitz,et al.  Mechanics Of Composite Materials , 2016 .

[35]  A. Agwai,et al.  A Peridynamic Approach for Coupled Fields , 2011 .

[36]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[37]  Florin Bobaru,et al.  Surface corrections for peridynamic models in elasticity and fracture , 2017, Computational Mechanics.

[38]  Erasmo Carrera,et al.  COUPLED THERMO-MECHANICAL ANALYSIS OF ONE-LAYERED AND MULTILAYERED PLATES , 2010 .

[39]  L. Gaul,et al.  A boundary element method for anisotropic coupled thermoelasticity , 2003 .

[40]  Stewart Andrew Silling,et al.  Linearized Theory of Peridynamic States , 2010 .

[41]  Martin Lévesque,et al.  Coupled heat conduction and thermal stress analyses in particulate composites , 2011 .

[42]  Selda Oterkus,et al.  Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening , 2016 .

[43]  Erkan Oterkus,et al.  Peridynamic Theory and Its Applications , 2013 .

[44]  Michael R Wisnom,et al.  Experimental study of damage propagation in Over-height Compact Tension tests , 2009 .

[45]  A. Zenkour Three-dimensional thermal shock plate problem within the framework of different thermoelasticity theories , 2015 .

[46]  Julia King,et al.  Failure in composite materials , 1989 .

[47]  Selda Oterkus,et al.  Fully coupled peridynamic thermomechanics , 2014 .

[48]  Selda Oterkus,et al.  Crack growth prediction in fully-coupled thermal and deformation fields using peridynamic theory , 2013 .

[49]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[50]  E. M. Wu,et al.  CRACK EXTENSION IN FIBERGLASS REINFORCED PLASTICS , 1965 .

[51]  Selda Oterkus,et al.  Peridynamic thermal diffusion , 2014, J. Comput. Phys..

[52]  Tsu-Wei Chou,et al.  Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminates , 1983 .

[53]  Finite element coupled thermostructural analysis of composite beams , 1997 .