A memetic ant colony optimization algorithm for the dynamic travelling salesman problem

Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms.

[1]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[2]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[3]  Bu-Sung Lee,et al.  Efficient Hierarchical Parallel Genetic Algorithms using Grid computing , 2007, Future Gener. Comput. Syst..

[4]  Ferrante Neri,et al.  An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  C. J. Eyckelhof,et al.  Ant Systems for a Dynamic TSP , 2002, Ant Algorithms.

[6]  C. J. Eyckelhof,et al.  Ant Systems for a Dynamic TSP. In: Ant Algorithms. ISBN 3-540-44146-8 , 2002 .

[7]  El-Ghazali Talbi,et al.  COSEARCH: A Parallel Cooperative Metaheuristic , 2006, J. Math. Model. Algorithms.

[8]  Li-Ning Xing,et al.  Double Layer ACO Algorithm for the Multi-Objective FJSSP , 2008, New Generation Computing.

[9]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[10]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[11]  Erica Jen,et al.  Stable or robust? What's the difference? , 2003, Complex..

[12]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[13]  Björn Olsson,et al.  On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[14]  Frank Neumann,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Runtime Analysis of a Simple Ant Colony Optimization Algorithm Runtime Analysis of a Simple Ant Colony Optimization Algorithm , 2022 .

[15]  Xin Yao,et al.  Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems , 2009, IEEE Transactions on Evolutionary Computation.

[16]  Matteo Gaeta,et al.  Exploring e-Learning Knowledge Through Ontological Memetic Agents , 2010, IEEE Computational Intelligence Magazine.

[17]  Shengxiang Yang,et al.  A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems , 2009, Soft Comput..

[18]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[19]  Lixin Tang,et al.  A new hybrid ant colony optimization algorithm for the vehicle routing problem , 2009, Pattern Recognit. Lett..

[20]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[21]  Bu-Sung Lee,et al.  Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..

[22]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[23]  T. Stützle,et al.  MAX-MIN Ant System and local search for the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[24]  Xin Yao,et al.  From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms , 2002, IEEE Trans. Evol. Comput..

[25]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Xiaojun Bi,et al.  The Improvement of Ant Colony Algorithm Based on the Inver-over Operator , 2007, 2007 International Conference on Mechatronics and Automation.

[27]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[28]  Xin Yao,et al.  Improved memetic algorithm for Capacitated Arc Routing Problem , 2009, 2009 IEEE Congress on Evolutionary Computation.

[29]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[30]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[31]  B. Bullnheimer,et al.  A NEW RANK BASED VERSION OF THE ANT SYSTEM: A COMPUTATIONAL STUDY , 1997 .

[32]  Martin Middendorf,et al.  Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP , 2001, EvoWorkshops.

[33]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Narayan Raman,et al.  The job shop tardiness problem: A decomposition approach , 1993 .

[35]  Xin Yao,et al.  A Memetic Algorithm for VLSI Floorplanning , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[37]  Tapabrata Ray,et al.  Development of a memetic algorithm for Dynamic Multi-Objective Optimization and its applications for online neural network modeling of UAVs , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[38]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[39]  William Rand,et al.  Measurements for understanding the behavior of the genetic algorithm in dynamic environments: a case study using the Shaky Ladder Hyperplane-Defined Functions , 2005, GECCO '05.

[40]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[41]  Peng Wang,et al.  A Knowledge-Based Ant Colony Optimization for Flexible Job Shop Scheduling Problems , 2010, Appl. Soft Comput..

[42]  Bo Liu,et al.  An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  ChenYing-Wu,et al.  A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem , 2008 .

[44]  Xin Yao,et al.  Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization , 2009, Memetic Comput..

[45]  Jürgen Branke,et al.  A Multi-population Approach to Dynamic Optimization Problems , 2000 .

[46]  Amit Agarwal,et al.  Hybrid ant colony algorithms for path planning in sparse graphs , 2008, Soft Comput..

[47]  Yaochu Jin,et al.  Single/Multi-objective Inverse Robust Evolutionary Design Methodology in the Presence of Uncertainty , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[48]  Daniel Angus Niching for ant colony optimization , 2006 .

[49]  Mark Sumner,et al.  A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Jing Tang,et al.  Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems , 2006, Soft Comput..

[51]  Zne-Jung Lee,et al.  Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment , 2008, Appl. Soft Comput..

[52]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[53]  A. Sima Etaner-Uyar,et al.  Towards an analysis of dynamic environments , 2005, GECCO '05.

[54]  Shengxiang Yang,et al.  Ant Colony Optimization with Immigrants Schemes in Dynamic Environments , 2010, PPSN.

[55]  Hartmut Schmeck,et al.  An Ant Colony Optimization approach to dynamic TSP , 2001 .

[56]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[57]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[58]  Zbigniew Michalewicz,et al.  Inver-over Operator for the TSP , 1998, PPSN.

[59]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[60]  Björn Olsson,et al.  On the Behavior of Evolutionary Global-Local Hybrids with Dynamic Fitness Functions , 2002, PPSN.

[61]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[62]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[63]  Shengxiang Yang,et al.  Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments , 2008, Evolutionary Computation.

[64]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[65]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[66]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[67]  Ruppa K. Thulasiram,et al.  HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network , 2009, Ad Hoc Networks.

[68]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[69]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .