Tensor-Tensor Products with Invertible Linear Transforms

[1]  Anima Anandkumar,et al.  Tensor Decompositions for Learning Latent Variable Models (A Survey for ALT) , 2015, ALT.

[2]  Misha Elena Kilmer,et al.  Clustering multi-way data: a novel algebraic approach , 2014, ArXiv.

[3]  Misha Elena Kilmer,et al.  Novel Methods for Multilinear Data Completion and De-noising Based on Tensor-SVD , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[5]  Shuchin Aeron,et al.  5D and 4D pre-stack seismic data completion using tensor nuclear norm (TNN) , 2013, SEG Technical Program Expanded Abstracts 2013.

[6]  Misha Elena Kilmer,et al.  Novel Factorization Strategies for Higher Order Tensors: Implications for Compression and Recovery of Multi-linear Data , 2013, ArXiv.

[7]  Misha Elena Kilmer,et al.  Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..

[8]  Misha Elena Kilmer,et al.  Facial Recognition Using Tensor-Tensor Decompositions , 2013, SIAM J. Imaging Sci..

[9]  Carla D. Martin,et al.  An Order-p Tensor Factorization with Applications in Imaging , 2013, SIAM J. Sci. Comput..

[10]  David B. Dunson,et al.  Bayesian Conditional Tensor Factorizations for High-Dimensional Classification , 2013, Journal of the American Statistical Association.

[11]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[12]  O. Alter,et al.  A Higher-Order Generalized Singular Value Decomposition for Comparison of Global mRNA Expression from Multiple Organisms , 2011, PloS one.

[13]  Jianqin Zhou,et al.  On discrete cosine transform , 2011, ArXiv.

[14]  M. Kilmer,et al.  Factorization strategies for third-order tensors , 2011 .

[15]  David F. Gleich,et al.  The power and Arnoldi methods in an algebra of circulants , 2011, Numer. Linear Algebra Appl..

[16]  Karen S. Braman Third-Order Tensors as Linear Operators on a Space of Matrices , 2010 .

[17]  Christino Tamon,et al.  Tensors as module homomorphisms over group rings , 2010, ArXiv.

[18]  Bruno A. Olshausen,et al.  An Unsupervised Algorithm For Learning Lie Group Transformations , 2010, ArXiv.

[19]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[20]  Jie Li,et al.  A Prior Neurophysiologic Knowledge Free Tensor-Based Scheme for Single Trial EEG Classification , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[21]  L. Hogben Handbook of Linear Algebra , 2006 .

[22]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[23]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[24]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[25]  Thomas Kailath,et al.  Displacement structure approach to discrete-trigonometric-transform based preconditioners of G.Strang type and of T.Chan type , 1996, SIAM J. Matrix Anal. Appl..

[26]  Antonio M. Peinado,et al.  Diagonalizing properties of the discrete cosine transforms , 1995, IEEE Trans. Signal Process..

[27]  Stephen A. Martucci,et al.  Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..

[28]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[29]  B. Blackadar,et al.  Operator Algebras: Theory of C*-Algebras and von Neumann Algebras , 2005 .

[30]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .