Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment

This study has utilized the tools of lipid biomarker chemistry and molecular phylogenetic analyses to assess the archaeal contribution to diversity and abundance within a microbial mat and underlying sediment from a hypersaline lagoon in Baja California. Based on abundance of ether‐linked isoprenoids, archaea made up from 1 to 4% of the cell numbers throughout the upper 100 mm of mat and sediment core. Below this depth archaeal lipid was two times more abundant than bacterial. Archaeol was the primary archaeal lipid in all layers. Relatively small amounts of caldarchaeol (dibiphytanyl glyceroltetraether) were present at most depths with phytanyl to biphytanyl molar ratios lowest (~10 : 1) in the 4–17 mm and 100–130 mm horizons, and highest (132 : 1) in the surface 0–2 mm. Lipids with cyclic biphytanyl cores were only detected below 100 mm. A novel polar lipid containing a C30 isoprenoid (squalane) moiety was isolated from the upper anoxic portion of the core and partially characterized. Hydrocarbon biomarker lipids included pentamethylicosane (2–10 mm) and crocetane (primarily below 10 mm). Archaeal molecular diversity varied somewhat with depth. With the exception of samples at 0–2 mm and 35–65 mm, Thermoplasmatales of marine benthic group D dominated clone libraries. A significant number of phylotypes representing the Crenarchaeota from marine benthic group B were generally present below 17 mm and dominated the 35–65 mm sample. Halobacteriaceae family made up 80% of the clone library of the surface 2 mm, and consisted primarily of sequences affiliated with the haloalkaliphilic Natronomonas pharaonis.

[1]  M. Kates Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids , 2010 .

[2]  T. Embaye,et al.  Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California , 2008, Geobiology.

[3]  S. Goffredi,et al.  Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California , 2008, The ISME Journal.

[4]  David L. Valentine,et al.  Opinion: Adaptations to energy stress dictate the ecology and evolution of the Archaea , 2007, Nature Reviews Microbiology.

[5]  A. Knoll,et al.  The Geological Succession of Primary Producers in the Oceans , 2007 .

[6]  Scott R. Miller,et al.  Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat , 2006, Applied and Environmental Microbiology.

[7]  Rika Anderson,et al.  Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[9]  H. Morii,et al.  Special methods for the analysis of ether lipid structure and metabolism in archaea. , 2006, Analytical biochemistry.

[10]  A. J. Jones,et al.  At Least 1 in 20 16S rRNA Sequence Records Currently Held in Public Repositories Is Estimated To Contain Substantial Anomalies , 2005, Applied and Environmental Microbiology.

[11]  D. Canfield,et al.  Community Composition of a Hypersaline Endoevaporitic Microbial Mat , 2005, Applied and Environmental Microbiology.

[12]  M. Miller,et al.  Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. , 2005, Systematic and applied microbiology.

[13]  J. Oró,et al.  Squalenes, phytanes and other isoprenoids as major neutral lipids of methanogenic and thermoacidophilic “archaebacteria” , 1979, Journal of Molecular Evolution.

[14]  T. Tornabene Non-aerated cultivation ofHalobacterium cutirubrum and its effect on cellular squalenes , 1978, Journal of Molecular Evolution.

[15]  R. Cavicchioli,et al.  Cold Adaptation in the Antarctic Archaeon Methanococcoides burtonii Involves Membrane Lipid Unsaturation , 2004, Journal of bacteriology.

[16]  K. Zepp,et al.  Direct in situ detection of cells in deep‐sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229) , 2004 .

[17]  M. Allen,et al.  Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. , 2004, Environmental microbiology.

[18]  R. Seifert,et al.  Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  B. Bebout,et al.  Methane production by microbial mats under low sulphate concentrations , 2004 .

[20]  B. Roe,et al.  Survey of Archaeal Diversity Reveals an Abundance of Halophilic Archaea in a Low-Salt, Sulfide- and Sulfur-Rich Spring , 2004, Applied and Environmental Microbiology.

[21]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[22]  J. Farmer,et al.  Lipid biomarker and carbon isotopic signatures for stromatolite‐forming, microbial mat communities and Phormidium cultures from Yellowstone National Park , 2004 .

[23]  T. Embaye,et al.  Intracellular localization of a group II chaperonin indicates a membrane-related function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Summons,et al.  GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils , 2003 .

[25]  R. Amann,et al.  Activity, Distribution, and Diversity of Sulfate Reducers and Other Bacteria in Sediments above Gas Hydrate (Cascadia Margin, Oregon) , 2003 .

[26]  J. Willison,et al.  Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. , 2003, FEMS microbiology ecology.

[27]  N. Pace,et al.  Complexity in Natural Microbial Ecosystems: The Guerrero Negro Experience , 2003, The Biological Bulletin.

[28]  Michael Wagner,et al.  probeBase: an online resource for rRNA-targeted oligonucleotide probes , 2003, Nucleic Acids Res..

[29]  J. Volkman,et al.  Phytol degradation products as biogeochemical tracers in aquatic environments , 2003 .

[30]  Michael Rothrock,et al.  Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments. , 2013, Astrobiology.

[31]  A. V. van Duin,et al.  Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. , 2002, Journal of lipid research.

[32]  Stefan Schouten,et al.  Distribution of Membrane Lipids of Planktonic Crenarchaeota in the Arabian Sea , 2002, Applied and Environmental Microbiology.

[33]  E. Delong,et al.  Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Sogin,et al.  Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities , 2002, Applied and Environmental Microbiology.

[35]  R. Huber,et al.  Signature Lipids and Stable Carbon Isotope Analyses of Octopus Spring Hyperthermophilic Communities Compared with Those ofAquificales Representatives , 2001, Applied and Environmental Microbiology.

[36]  O. Schmale,et al.  A new straight-chain hydrocarbon biomarker associated with anaerobic methane cycling , 2001 .

[37]  D. D. Marais,et al.  The role of microbial mats in the production of reduced gases on the early Earth , 2001, Nature.

[38]  R. Pancost,et al.  Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts , 2001 .

[39]  A. Bordalo,et al.  Crenarchaeota and Euryarchaeota in temperate estuarine sediments , 2001, Journal of applied microbiology.

[40]  J. M. Hayes,et al.  Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments , 2001, Applied and Environmental Microbiology.

[41]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[42]  B. Jørgensen,et al.  Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane , 2001 .

[43]  D. M. Ward,et al.  Diversity and Distribution in Hypersaline Microbial Mats of Bacteria Related to Chloroflexus spp , 2001 .

[44]  J. Hayes,et al.  Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments , 2000 .

[45]  R. Amann,et al.  Community Structure, Cellular rRNA Content, and Activity of Sulfate-Reducing Bacteria in Marine Arctic Sediments , 2000, Applied and Environmental Microbiology.

[46]  R. Oremland,et al.  Distribution and Diversity of Archaea Corresponding to the Limnological Cycle of a Hypersaline Stratified Lake (Solar Lake, Sinai, Egypt) , 2000, Applied and Environmental Microbiology.

[47]  Stefan Schouten,et al.  Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. , 2000, Rapid communications in mass spectrometry : RCM.

[48]  R. Seifert,et al.  Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting , 1999 .

[49]  C. Vetriani,et al.  Population Structure and Phylogenetic Characterization of Marine Benthic Archaea in Deep-Sea Sediments , 1999, Applied and Environmental Microbiology.

[50]  K. Schleifer,et al.  The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. , 1999, Systematic and applied microbiology.

[51]  Gerard Muyzer,et al.  Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats , 1999, Applied and Environmental Microbiology.

[52]  T. J. Walton,et al.  Application of high-performance liquid chromatography/electrospray mass spectrometry for the characterization of membrane lipids in the haloalkaliphilic archaebacteriumNatronobacterium magadii , 1998 .

[53]  G. Muyzer,et al.  The phylogeny of unicellular, extremely halotolerant cyanobacteria , 1998, Archives of Microbiology.

[54]  P. Franzmann,et al.  Carbon isotopic fractionation associated with methylotrophic methanogenesis , 1998 .

[55]  E. Delong,et al.  Dibiphytanyl Ether Lipids in Nonthermophilic Crenarchaeotes , 1998, Applied and Environmental Microbiology.

[56]  J. Rontani,et al.  Biotransformation pathways of phytol in recent anoxic sediments 1 This work was presented at the 18t , 1998 .

[57]  H. Morii,et al.  Correlation of Polar Lipid Composition with 16S rRNA Phylogeny in Methanogens. Further Analysis of Lipid Component Parts. , 1998, Bioscience, biotechnology, and biochemistry.

[58]  Stefan Schouten,et al.  Ether lipids of planktonic archaea in the marine water column , 1997, Applied and environmental microbiology.

[59]  R. Huber,et al.  2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei , 1997 .

[60]  M. Kates Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria , 1996 .

[61]  D. D. Des Marais The biogeochemistry of hypersaline microbial mats. , 1995, Advances in microbial ecology.

[62]  D. Stahl,et al.  Community structure of a microbial mat: the phylogenetic dimension. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Morii,et al.  Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. , 1993, Microbiological reviews.

[64]  C. Largeau,et al.  A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal, and Petroleum Formation , 1993 .

[65]  M. Kates,et al.  Membrane Lipids of Archaea , 1993 .

[66]  M. Kate Chapter 9 Membrane lipids of archaea , 1993 .

[67]  N. Pace,et al.  Differential amplification of rRNA genes by polymerase chain reaction , 1992, Applied and environmental microbiology.

[68]  E. S. Van Vleet,et al.  Diphytanyl glycerol ether distributions in sediments of the Orca Basin. , 1992, Geochimica et cosmochimica acta.

[69]  L. Jahnke,et al.  Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath). , 1992, Journal of general microbiology.

[70]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Lane 16S/23S rRNA sequencing , 1991 .

[72]  P. Cullis,et al.  Chapter 1 Physical properties and functional roles of lipids in membranes , 1991 .

[73]  I. Ekiel,et al.  Novel, acid-labile, hydroxydiether lipid cores in methanogenic bacteria. , 1990, The Journal of biological chemistry.

[74]  R. Summons,et al.  Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments , 1990 .

[75]  A. Vella,et al.  Ether-derived alkanes from sedimentary organic matter , 1990 .

[76]  D. D. Marais,et al.  Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats - Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt , 1989 .

[77]  E. Stackebrandt,et al.  Halobacterium lacusprofundi sp. nov., a Halophilic Bacterium Isolated from Deep Lake, Antarctica , 1988 .

[78]  J. S. Sinninghe Damsté,et al.  Application of biological markers in the recognition of palaeohypersaline environments , 1988, Geological Society, London, Special Publications.

[79]  B. Jørgensen,et al.  Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat , 1987, Applied and environmental microbiology.

[80]  P. Nichols,et al.  Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions , 1986, Journal of bacteriology.

[81]  J. Patton,et al.  The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments , 1986 .

[82]  A. Gliozzi,et al.  Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids , 1986, Microbiological reviews.

[83]  A. Knoll A Paleobiological Perspective on Sabkhas , 1985 .

[84]  D. M. Ward,et al.  Interactions between methanogenic and sulfate-reducing bacteria in sediments , 1985 .

[85]  B. Jørgensen,et al.  Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat1 , 1983 .

[86]  K. M. Shaw,et al.  Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. , 1983, The Journal of biological chemistry.

[87]  S. Brassell,et al.  Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments , 1981, Nature.

[88]  R. Castenholz,et al.  Laminated microbial mats, laguna Guerrero Negro, Mexico , 1981 .

[89]  M. J. Baedecker,et al.  The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments , 1977 .

[90]  R. J. Horodyski,et al.  Laminated Algal Mats from a Coastal Lagoon, Laguna Mormona, Baja California, Mexico , 1977 .

[91]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.