AC impedance characteristics for anode-supported microtubular solid oxide fuel cells

[1]  Ellen Ivers-Tiffée,et al.  Performance Enhancement of SOFC Anode Through Electrochemically Induced Ni/YSZ Nanostructures , 2011 .

[2]  S. Badwal Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia , 1984 .

[3]  J. Weese A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization , 1992 .

[4]  Toshio Suzuki,et al.  Cube-type micro SOFC stacks using sub-millimeter tubular SOFCs , 2008 .

[5]  Ellen Ivers-Tiffée,et al.  Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .

[6]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[7]  Tatsumi Ishihara,et al.  High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ Composite Film , 2005 .

[8]  Kevin Kendall,et al.  Rapid Heating SOFC System for Hybrid Applications , 2000 .

[9]  L. D. Jonghe,et al.  Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte , 1997 .

[10]  Xiaobo Du,et al.  Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs , 2008 .

[11]  Joo-Hwan Han,et al.  Fabrication of anode support for solid oxide fuel cell using zirconium hydroxide as a pore former , 2011 .

[12]  Ellen Ivers-Tiffée,et al.  Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni ∕ 8YSZ Cermet Electrodes , 2008 .

[13]  F. Tietz,et al.  Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells , 2010 .

[14]  Ellen Ivers-Tiffée,et al.  Electrochemical Analysis of Reformate-Fuelled Anode Supported SOFC , 2011 .

[15]  Toshiaki Yamaguchi,et al.  Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells , 2007 .

[16]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[17]  T. Matsui,et al.  Gas Transport Impedance in Segmented-in-Series Tubular Solid Oxide Fuel Cell , 2011 .

[18]  B. Liu,et al.  Analysis of Impedance Spectra for Segmented-in-Series Tubular Solid Oxide Fuel Cells , 2010 .

[19]  J. Canales‐Vázquez,et al.  Preparation of thin layer materials with macroporous microstructure for SOFC applications , 2008 .

[20]  Kevin Kendall,et al.  A small solid oxide fuel cell demonstrator for microelectronic applications , 1998 .

[21]  Keiji Yashiro,et al.  Demonstration and Stack Concept of Quick Startup/shutdown SOFC (qSOFC) , 2002 .

[22]  Hwan Moon,et al.  Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing , 2008 .

[23]  Ellen Ivers-Tiffée,et al.  Degradation and Relaxation Effects of Ni Patterned Anodes in H2 – H2O Atmosphere , 2010 .

[24]  E. Ivers-Tiffée,et al.  Impedance Study of Alternative ( La , Sr ) FeO3 − δ and ( La , Sr ) ( Co , Fe ) O3 − δ MIEC Cathode Compositions , 2010 .

[25]  Fritz B. Prinz,et al.  High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation , 2007 .

[26]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[27]  S. Badwal Effect of dopant concentration on the grain boundary and volume resistivity of yttria-zirconia , 1987 .

[28]  R. Glass,et al.  Effects of the Use of Pore Formers on Performance of an Anode supported Solid Oxide Fuel Cell , 2005 .

[29]  Norbert H. Menzler,et al.  Degradation of anode supported cell (ASC) performance by Cr-poisoning , 2011 .

[30]  Yi Cui,et al.  Improved solid oxide fuel cell performance with nanostructured electrolytes. , 2011, ACS nano.

[31]  Scott A. Barnett,et al.  Thin Yttrium‐Stabilized Zirconia Electrolyte Solid Oxide Fuel Cells by Centrifugal Casting , 2004 .

[32]  A. Weber,et al.  Manufacturing and characterization of metal-supported solid oxide fuel cells , 2011 .