Role of surface stoichiometry on the interfacial electron behavior at Ni/TiO2(0 0 1) interfaces

[1]  Jisheng Pan,et al.  Origin of XPS binding energy shifts in Ni clusters and atoms on rutile TiO2 surfaces , 2008 .

[2]  Q. Fu,et al.  Interaction of nanostructured metal overlayers with oxide surfaces , 2007 .

[3]  Junfa Zhu,et al.  Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters , 2007 .

[4]  D. Matthey,et al.  Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) , 2007, Science.

[5]  H. Freund,et al.  Initial and final state contributions to binding-energy shifts due to lattice strain: Validation of Auger parameter analyses , 2006 .

[6]  S. Shiraki,et al.  Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM , 2004 .

[7]  M. Haruta,et al.  Size and density of Au particles deposited on TiO2(1 1 0)-(1 × 1) and cross-linked (1 × 2) surfaces , 2004 .

[8]  H. Freund,et al.  Cluster core-level binding-energy shifts: the role of lattice strain. , 2004, Physical review letters.

[9]  Koji Kariya-city Aichi-pref. Tanaka,et al.  Electronic structures of Au onTiO2(110)by first-principles calculations , 2004 .

[10]  G. Schwab,et al.  Mischkatalysatoren mit dotiertem Träger , 1961, Naturwissenschaften.

[11]  Horia Metiu,et al.  Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces , 2003 .

[12]  J. Nørskov,et al.  Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110). , 2003, Physical review letters.

[13]  R. Egdell,et al.  Initial and final state effects in photoemission from Au nanoclusters on TiO2(110) , 2002 .

[14]  A. Selloni,et al.  Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study , 2002 .

[15]  I. Goldfarb,et al.  The evolution of Ni nanoislands on the rutile TiO2(110) surface with coverage, heating and oxygen treatment , 2001 .

[16]  S. Bourgeois,et al.  Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110) , 2000 .

[17]  Fulvio Parmigiani,et al.  Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding , 1999 .

[18]  V. Dravid,et al.  First-principles study of initial stage of Ni thin-film growth on a TiO_2 (110) surface , 1999 .

[19]  N. Mårtensson,et al.  On the origin of core-level binding energy shifts , 1995 .

[20]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[21]  Xuming Wei,et al.  Interactions in the Fe/TiO2(110) system , 1991 .

[22]  H. Onishi,et al.  Photoelectron spectroscopic study of clean and CO adsorbed NI/TiO2(110) interfaces , 1990 .

[23]  V. Henrich,et al.  Electronic interactions in the rhodium/TiO2 system , 1988 .

[24]  G. Wertheim,et al.  Noble- and transition-metal clusters: The d bands of silver and palladium. , 1986, Physical review. B, Condensed matter.

[25]  G. Wertheim,et al.  Unit Charge on Supported Gold Clusters in Photoemission Final State , 1983 .

[26]  Yip-Wah Chung,et al.  Electronic properties, structure and temperature-dependent composition of nickel deposited on rutile titanium dioxide (110) surfaces , 1980 .

[27]  H. Wise,et al.  Hydrogenation of surface carbon on alumina-supported nickel , 1979 .

[28]  J. Falconer,et al.  Methanation on supported nickel catalysts using temperature programmed heating , 1979 .

[29]  M. Vannice,et al.  Metal-support effects on the activity and selectivity of Ni catalysts in COH2 synthesis reactions , 1979 .

[30]  M. Poutsma,et al.  Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals , 1978 .

[31]  S. C. Fung,et al.  Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide , 1978 .

[32]  G. Schwab Catalytic effects on the surface of semiconductors supported by metals , 1969 .

[33]  G. Schwab,et al.  Neues über dotierte Kontaktträger , 1962 .