An introduction to ALS-inhibiting herbicides

Herbicides that inhibit acetolactate synthase (ALS), the enzyme common to the biosynthesis of the branch-chain amino acids (valine, leucine, and isoleucine), affect many species of higher plants as well as bacteria, fungi, yeasts, and algae. The novel mechanism of action attributed to ALS inhibitors, their effect on the reproduction of some plant species, their potency at extremely low concentrations, and the rapid evolution of resistance to these herbicides in some plants and microorganisms are characteristics that set ALS inhibitors apart from their predecessors. This class of chemicals affects seedling growth. Older plants exhibit varied signs of malformation, stunting, and reduced seed production. These herbicides are so potent that they can affect plants at levels that are undetectable by any standard chemical protocol. Weeds quickly become resistant to ALS inhibitors, presumably because these herbicides have a single mode of action and because many have long residual activity. Concern now is directed towards developing the technology to detect very low concentrations of ALS inhibitors in the environment and their indirect effects on plant and animal health.

[1]  C. Mallory-Smith,et al.  DNA Sequence Variation in Domain a of the Acetolactate Synthase Genes of Herbicide-Resistant and -Susceptible Weed Biotypes , 1992, Weed Science.

[2]  R. Larossa,et al.  Utilization of sulfometuron methyl, an acetolactate synthase inhibitor, in molecular biological and metabolic studies of plants and microbes. , 1988, Methods in enzymology.

[3]  D. Shaner,et al.  The Imidazolinone Herbicides , 1991 .

[4]  J. Dulka,et al.  Properties of sulfometuron methyl affecting its environmental fate: aqueous hydrolysis and photolysis, mobility and adsorption on soils, and bioaccumulation potential , 1985 .

[5]  D. E. Wilkins,et al.  Impact of sulfonylurea herbicides on Rhizoctonia root rot, growth and yield of winter wheat , 1992 .

[6]  G. Acquaah,et al.  Monogenic dominant sulfonylurea resistance in sugarbeet from somatic cell selection , 1992 .

[7]  M. Devine,et al.  Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media , 1991 .

[8]  M. Guttieri,et al.  Diverse Mutations in the Acetolactate Synthase Gene Confer Chlorsulfuron Resistance in Kochia (Kochia scoparia) Biotypes , 1995, Weed Science.

[9]  I. Heap International survey of herbicide-resistant weeds , 1997 .

[10]  I. Heap,et al.  The occurrence of herbicide‐resistant weeds worldwide , 1997 .

[11]  J. Fletcher,et al.  Potential environmental risks associated with the new sulfonylurea herbicides. , 1993, Environmental science & technology.

[12]  R. McDougall,et al.  Registration of H401-4-4-2 Birdsfoot Trefoil Germplasm Resistant to Sulfonylurea , 1995 .

[13]  S. Levy The Antibiotic Paradox , 1992, Springer US.

[14]  A. Rovira,et al.  Effects of the Herbicide Chlorsulfuron on Rhizoctonia Bare Patch and Take-All of Barley and Wheat , 1986 .

[15]  W. E. Dyer,et al.  Differential Herbicide Response Among Sulfonylurea-Resistant Kochia scoparia L. Accessions , 1993, Weed Science.

[16]  C. Mallory-Smith,et al.  Monitoring the Occurrence of Sulfonylurea-Resistant Prickly Lettuce (Lactuca serriola) , 1992, Weed Technology.

[17]  Bahman Shafii,et al.  Growth and Competitiveness of Sulfonyhirea-Resistant and -Susceptible Kochia (Kochia scoparia) , 1994, Weed Science.

[18]  B. Gerwick,et al.  Rapid Diagnosis of Als/Ahas-Resistant Weeds , 1993, Weed Technology.

[19]  Metabolic mayhem caused by 2‐ketoacid imbalances , 1987, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  R. Larossa,et al.  ilvB-encoded acetolactate synthase is resistant to the herbicide sulfometuron methyl , 1984, Journal of bacteriology.

[21]  C. Preston,et al.  MALATHION ANTAGONIZES METABOLISM-BASED CHLORSULFURON RESISTANCE IN LOLIUM-RIGIDUM , 1994 .

[22]  J. Casida,et al.  Sulfonylurea herbicides: growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine, or isoleucine , 1985 .

[23]  S. C. Falco,et al.  Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Fletcher,et al.  Potential impact of low levels of chlorsulfuron and other herbicides on growth and yield of nontarget plants , 1996 .

[25]  J. Moyer,et al.  Chlorsulfuron Persistence and Response of Nine Rotational Crops in Alkaline Soils of Southern Alberta , 1990, Weed Technology.

[26]  M. Devine,et al.  Cross-Resistance of a Chlorsulfuron-Resistant Biotype of Stellaria media to a Triazolopyrimidine Herbicide. , 1990, Plant physiology.

[27]  L. Saari Resistance to acetolactate synthase inhibiting herbicides , 1994 .

[28]  A. Appleby,et al.  Response of Wheat (Triticum aestivum) and Rotation Crops to Chlorsulfuron , 1983, Weed Science.

[29]  L. Saari,et al.  Resistance of Kochia (Kochia scoparia) to Sulfonylurea and Imidazolinone Herbicides , 1990, Weed Technology.

[30]  R. Larossa,et al.  Leaky pantothenate and thiamin mutations of Salmonella typhimurium conferring suphometuron methyl sensitivity. , 1989, Journal of general microbiology.

[31]  S. C. Falco,et al.  Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. , 1985, Genetics.

[32]  A. Ibrahim,et al.  Effect of herbicide glean on mitosis, chromosomes and nucleic acids in Allium cepa and Vicia faba root meristems. , 1987 .

[33]  C. Mallory-Smith,et al.  SULFONYLUREA HERBICIDE RESISTANT WEEDS: DISCOVERY, DISTRIBUTION, BIOLOGY, MECHANISM, AND MANAGEMENT , 1991 .

[34]  C. Mallory-Smith,et al.  Sulfonylurea-Resistant Russian Thistle (Salsola iberica) Survey in Washington State , 1994, Weed technology.

[35]  J. Gilpatrick Management of Resistance in Plant Pathogens , 1983 .

[36]  D. Friedberg,et al.  Molecular Characterization of Genes Coding for Wild-Type and Sulfonylurea-Resistant Acetolactate Synthase in the Cyanobacterium Synechococcus PC C7942 , 1990, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[37]  M. Faust,et al.  pH-Dependent sorption, bioconcentration and algal toxicity of sulfonylurea herbicides , 1995 .

[38]  P. Charest,et al.  Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. , 1989, Plant physiology.

[39]  A. M. Blair,et al.  A review of the activity, fate and mode of action of sulfonylurea herbicides , 1988 .

[40]  S. Matteson,et al.  Herbicide-Resistant Mutants from Tobacco Cell Cultures , 1984, Science.

[41]  A. Mårtensson,et al.  Effects of Chlorsulfuron on Rhizobium Grown in Pure Culture and in Symbiosis with Alfalfa (Medicago sativa) and Red Clover (Trifolium pratense) , 1989, Weed Science.

[42]  P. Sweetser,et al.  Metabolism of chlorsulfuron by plants: Biological basis for selectivity of a new herbicide for cereals , 1982 .

[43]  S. Dumontet,et al.  Sulfonylureas: preliminary study on the effect on selected microbial strains and soil respiration , 1993 .

[44]  M. Devine,et al.  Response of a Chlorsulfuron-Resistant Biotype of Kochia scoparia to Sulfonylurea and Alternative Herbicides , 1993, Weed Science.

[45]  K. Vaughn,et al.  A novel pattern of herbicide cross-resistance in a trifluralin-resistant biotype of green foxtail [Setaria viridis (L.) beauv.] , 1992 .

[46]  D. Penner,et al.  Chlorsulfuron-Resistant Sugarbeet: Cross-Resistance and Physiological Basis of Resistance , 1992, Weed Science.

[47]  C. Preston,et al.  Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes , 1996 .

[48]  T. Ray The mode of action of chlorsulfuron: A new herbicide for cereals , 1982 .

[49]  J. Newcomb,et al.  Mutations in Chlamydomonas reinhardtii Conferring Resistance to the Herbicide Sulfometuron Methyl. , 1987, Plant physiology.

[50]  J. Saunders,et al.  Phytochemical Effects of Environmental Compounds , 1987, Recent Advances in Phytochemistry.

[51]  W. Whitman,et al.  Sulfometuron methyl-sensitive and -resistant acetolactate synthases of the archaebacteria Methanococcus spp , 1987, Journal of bacteriology.

[52]  L. Saari,et al.  Rapid metabolic inactivation is the basis for cross-resistance to chlorsulfuron in diclofop-methyl-resistant rigid ryegrass (Lolium rigidum) biotype , 1992 .

[53]  A. Rovira,et al.  Herbicide-pathogen interactions in soil-borne root diseases , 1989 .

[54]  L. Lass,et al.  Plant Movement and Seed Dispersal of Russian Thistle (Salsola iberica) , 1995, Weed Science.

[55]  R. Larossa,et al.  The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. , 1984, The Journal of biological chemistry.

[56]  J. Durner,et al.  The oxygenase reaction of acetolactate synthase detected by chemiluminescence , 1994, FEBS letters.

[57]  J. Durner,et al.  New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. , 1991, Plant physiology.

[58]  P. Hannan A novel detection scheme for herbicidal residues , 1995 .

[59]  Agronomic Performance of Sulfonylurea-Resistant Transgenic Flue-Cured Tobacco Grown under Field Conditions , 1993 .

[60]  R. Behrens,et al.  Basis for Response Differences of Two Broadleaf Weeds to Chlorsulfuron , 1984, Weed science.

[61]  J. Schloss,et al.  Origin of the herbicide binding site of acetolactate synthase , 1988, Nature.

[62]  C. Mallory-Smith,et al.  Identification of Sulfonylurea Herbicide-Resistant Prickly Lettuce (Lactuca serriola) , 1990, Weed Technology.

[63]  S. Anderson,et al.  Effect of Soil Properties and Surfactant on Primisulfuron Sorption , 1996 .

[64]  C. Mallory-Smith,et al.  Characterization of Chlorsulfuron Resistant and Susceptible Kochia (Kochia scoparia) , 1994, Weed Technology.

[65]  J. Becker,et al.  Candida albicans gene encoding resistance to benomyl and methotrexate is a multidrug resistance gene , 1994, Antimicrobial Agents and Chemotherapy.

[66]  L. Saari,et al.  Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle , 1992 .

[67]  R. Bromilow,et al.  Degradation rates in soil of 1‐benzyltriazoies and two triazole fungicides , 1988 .

[68]  C. Mallory-Smith,et al.  Pollen-Mediated Gene Flow of Sulfonylurea-Resistant Kochia (Kochia scoparia) , 1995, Weed Science.

[69]  Bahman Shafii,et al.  Differential Competitiveness of Sulfonylurea Resistant and Susceptible Prickly Lettuce (Lactuca serriola) , 1992, Weed Technology.