Model Adaptation for Hyperbolic Systems with Relaxation
暂无分享,去创建一个
[1] Giacomo Dimarco,et al. Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..
[2] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .
[3] Grégoire Allaire,et al. A strictly hyperbolic equilibrium phase transition model , 2007 .
[4] Athanasios E. Tzavaras,et al. RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .
[5] François Golse,et al. A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem , 2003 .
[6] Laurent Gosse,et al. Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..
[7] Philippe Helluy,et al. Pressure laws and fast Legendre transform , 2011 .
[8] Tai-Ping Liu. Hyperbolic conservation laws with relaxation , 1987 .
[9] I. Suliciu,et al. On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids , 1998 .
[10] Frédéric Coquel,et al. Coupling of general Lagrangian systems , 2007, Math. Comput..
[11] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[12] N. Seguin,et al. Numerical Coupling of Two-Phase Flows , 2006 .
[13] P. Raviart,et al. The interface coupling of the gas dynamics equations , 2008 .
[14] Guillaume Bal,et al. Mathematical Modelling and Numerical Analysis Coupling of Transport and Diffusion Models in Linear Transport Theory , 2022 .
[15] Stéphane Dellacherie,et al. Relaxation schemes for the multicomponent Euler system , 2003 .
[16] D. Drew,et al. Theory of Multicomponent Fluids , 1998 .
[17] Edwige Godlewski,et al. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.
[18] Philippe Helluy,et al. Relaxation models of phase transition flows , 2006 .
[19] D. Serre. Multidimensional Shock Interaction for a Chaplygin Gas , 2009 .
[20] Thomas Galié,et al. Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .
[21] M. Ishii. Thermo-fluid dynamic theory of two-phase flow , 1975 .
[22] Frédéric Coquel,et al. The coupling of homogeneous models for two-phase flows , 2007 .
[23] C. D. Levermore,et al. Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .
[24] Laurent Gosse,et al. Computing Qualitatively Correct Approximations of Balance Laws , 2013 .
[25] Wen-An Yong,et al. Singular Perturbations of First-Order Hyperbolic Systems with Stiff Source Terms , 1999 .
[26] Annalisa Ambroso,et al. COUPLING OF MULTIPHASE FLOW MODELS , 2005 .
[27] Frédéric Coquel,et al. RELAXATION OF FLUID SYSTEMS , 2012 .
[28] Frédéric Hecht,et al. AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS , 2009 .
[29] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[30] Alfio Quarteroni,et al. MULTIMODELS FOR INCOMPRESSIBLE FLOWS: ITERATIVE SOLUTIONS FOR THE NAVIER-STOKES/OSEEN COUPLING , 2001 .
[31] Luc Mieussens,et al. Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..
[32] Ventura Caetano,et al. Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .
[33] P. Raviart,et al. A Godunov-type method for the seven-equation model of compressible two-phase flow , 2012 .
[34] Axel Klar. An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .
[35] Christian Rohde,et al. The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.
[36] T. Gallouët,et al. Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .
[37] I. Suliciu,et al. On the thermodynamics of rate-type fluids and phase transitions. II. Phase transitions , 1998 .
[38] François Bouchut,et al. A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS , 2004 .
[39] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[40] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[41] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[42] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[43] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[44] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[45] Khaled Saleh,et al. Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. , 2012 .
[46] Li Wang,et al. A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations , 2012, Math. Comput..
[47] Frédéric Coquel,et al. Homogeneous models with phase transition: coupling by finite volume methods , 2005 .