Model Adaptation for Hyperbolic Systems with Relaxation

We address the numerical coupling of two hyperbolic systems, a relaxation model and the associated equilibrium model, separated by spatial interfaces that automatically evolve in time, the whole being approximated by finite volume schemes. The criterion to choose where each model has to be used results of the Chapman–Enskog expansion of the relaxed model, both on a continuous and a discrete view point. Numerical tests illustrate the good behavior of the algorithm.

[1]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[2]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems , 2005 .

[3]  Grégoire Allaire,et al.  A strictly hyperbolic equilibrium phase transition model , 2007 .

[4]  Athanasios E. Tzavaras,et al.  RELATIVE ENTROPY IN HYPERBOLIC RELAXATION , 2005 .

[5]  François Golse,et al.  A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem , 2003 .

[6]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..

[7]  Philippe Helluy,et al.  Pressure laws and fast Legendre transform , 2011 .

[8]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[9]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids , 1998 .

[10]  Frédéric Coquel,et al.  Coupling of general Lagrangian systems , 2007, Math. Comput..

[11]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[12]  N. Seguin,et al.  Numerical Coupling of Two-Phase Flows , 2006 .

[13]  P. Raviart,et al.  The interface coupling of the gas dynamics equations , 2008 .

[14]  Guillaume Bal,et al.  Mathematical Modelling and Numerical Analysis Coupling of Transport and Diffusion Models in Linear Transport Theory , 2022 .

[15]  Stéphane Dellacherie,et al.  Relaxation schemes for the multicomponent Euler system , 2003 .

[16]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[17]  Edwige Godlewski,et al.  The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case , 2004, Numerische Mathematik.

[18]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[19]  D. Serre Multidimensional Shock Interaction for a Chaplygin Gas , 2009 .

[20]  Thomas Galié,et al.  Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. , 2009 .

[21]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[22]  Frédéric Coquel,et al.  The coupling of homogeneous models for two-phase flows , 2007 .

[23]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[24]  Laurent Gosse,et al.  Computing Qualitatively Correct Approximations of Balance Laws , 2013 .

[25]  Wen-An Yong,et al.  Singular Perturbations of First-Order Hyperbolic Systems with Stiff Source Terms , 1999 .

[26]  Annalisa Ambroso,et al.  COUPLING OF MULTIPHASE FLOW MODELS , 2005 .

[27]  Frédéric Coquel,et al.  RELAXATION OF FLUID SYSTEMS , 2012 .

[28]  Frédéric Hecht,et al.  AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS , 2009 .

[29]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[30]  Alfio Quarteroni,et al.  MULTIMODELS FOR INCOMPRESSIBLE FLOWS: ITERATIVE SOLUTIONS FOR THE NAVIER-STOKES/OSEEN COUPLING , 2001 .

[31]  Luc Mieussens,et al.  Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..

[32]  Ventura Caetano,et al.  Sur certains problèmes de linéarisation et de couplage pour les systèmes hyperboliques non-linéaires , 2006 .

[33]  P. Raviart,et al.  A Godunov-type method for the seven-equation model of compressible two-phase flow , 2012 .

[34]  Axel Klar An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .

[35]  Christian Rohde,et al.  The computation of nonclassical shock waves with a heterogeneous multiscale method , 2010, Networks Heterog. Media.

[36]  T. Gallouët,et al.  Numerical modeling of two-phase flows using the two-fluid two-pressure approach , 2004 .

[37]  I. Suliciu,et al.  On the thermodynamics of rate-type fluids and phase transitions. II. Phase transitions , 1998 .

[38]  François Bouchut,et al.  A REDUCED STABILITY CONDITION FOR NONLINEAR RELAXATION TO CONSERVATION LAWS , 2004 .

[39]  M. Baer,et al.  A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .

[40]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[41]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[42]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[43]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[44]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[45]  Khaled Saleh,et al.  Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. , 2012 .

[46]  Li Wang,et al.  A domain decomposition method for semilinear hyperbolic systems with two-scale relaxations , 2012, Math. Comput..

[47]  Frédéric Coquel,et al.  Homogeneous models with phase transition: coupling by finite volume methods , 2005 .