Boundary Value Problems for the Stationary Axisymmetric Einstein Equations: A Disk Rotating Around a Black Hole

We solve a class of boundary value problems for the stationary axisymmetric Einstein equations involving a disk rotating around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.

[1]  A. S. Fokas,et al.  Boundary-value problems for the stationary axisymmetric Einstein equations: a rotating disc , 2010 .

[2]  A. Fokas,et al.  Boundary value problems for the stationary axisymmetric Einstein equations: a rotating disk , 2009, 0911.1898.

[3]  V. Matveev,et al.  Theta Function Solutions of the Schlesinger System and the Ernst Equation , 2000 .

[4]  山田 陽 Precise variational formulas for Abelian differentials , 1979 .

[5]  Neugebauer,et al.  General relativistic gravitational field of a rigidly rotating disk of dust: Axis potential, disk metric, and surface mass density. , 1994, Physical review letters.

[6]  Selected Solutions of Einstein’s Field Equations: Their Role in General Relativity and Astrophysics , 2000, gr-qc/0004016.

[7]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[8]  C. Klein,et al.  Ernst equation, Fay identities and variational formulas on hyperelliptic curves , 2004 .

[9]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[10]  C. Klein Counter-rotating dust rings around a static black hole , 1997 .

[11]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[12]  Athanassios S. Fokas,et al.  Integrable Nonlinear Evolution Equations on the Half-Line , 2002 .

[13]  R. Meinel,et al.  The Einsteinian gravitational field of the rigidly rotating disk of dust , 1993 .

[14]  B. Schmidt Einstein's Field Equations and Their Physical Implications: Selected Essays In Honour Of Jürgen Ehlers , 2010 .

[15]  M. Ansorg,et al.  Relativistic Figures of Equilibrium , 2008 .

[16]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[17]  Neugebauer,et al.  General relativistic gravitational field of a rigidly rotating disk of dust: solution in terms of ultraelliptic functions. , 1995, Physical review letters.

[18]  C. Siemens I. On uniform rotation , 1867, Proceedings of the Royal Society of London.

[19]  M. MacCallum,et al.  Exact Solutions of Einstein's Field Equations: Notation , 2003 .

[20]  R. Wagoner,et al.  UNIFORMLY ROTATING DISKS IN GENERAL RELATIVITY. , 1969 .

[21]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[22]  A. S. Fokas,et al.  A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[24]  Physically realistic solutions to the Ernst equation on hyperelliptic Riemann surfaces , 1998, gr-qc/9806051.

[25]  R. Wagoner,et al.  RELATIVISTIC DISKS. I. UNIFORM ROTATION. , 1971 .

[26]  D. Korotkin Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum , 1988 .

[27]  Athanassios S. Fokas,et al.  A Unified Approach To Boundary Value Problems , 2008 .

[28]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[29]  J. E. Pringle,et al.  Theory of black hole accretion disks , 1999 .