Triangulating Planar Graphs while Minimizing the Maximum Degree

In this paper we consider the problem how to augment a planar graph to a triangulated planar graph while minimizing the maximum degree increase. We show that the general problem is NP-complete for bi-connected planar graphs. An approximation algorithm is presented to triangulate triconnected planar graphs such that the maximum degree of the triangulation is at mostd+8, wheredis the maximum degree of the input graph. Generalizing this result yields a triangulation algorithm for general planar graphs with maximum degree at most an additional constant larger than existing lower bounds.

[1]  Tsan-sheng Hsu,et al.  A linear time algorithm for triconnectivity augmentation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[2]  Giuseppe Di Battista,et al.  Angles of planar triangular graphs , 1993, STOC '93.

[3]  Arnie Rosenthal,et al.  Smallest Augmentations to Biconnect a Graph , 1977, SIAM J. Comput..

[4]  Akira Nakamura,et al.  Graph Augmentation Problems for a Specified Set of Vertices , 1990, SIGAL International Symposium on Algorithms.

[5]  Achilleas Papakostas,et al.  On the Angular Resolution of Planar Graphs , 1994, SIAM J. Discret. Math..

[6]  Robert E. Tarjan,et al.  Augmentation Problems , 1976, SIAM J. Comput..

[7]  Bojan Mohar,et al.  Circle Packings of Maps in Polynomial Time , 1997, Eur. J. Comb..

[8]  Akira Nakamura,et al.  Edge-Connectivity Augmentation Problems , 1987, J. Comput. Syst. Sci..

[9]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[10]  Akira Nakamura,et al.  A Minimum 3-Connectivity Augmentation of a Graph , 1993, J. Comput. Syst. Sci..

[11]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[12]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, SWAT.

[13]  András Frank,et al.  Augmenting graphs to meet edge-connectivity requirements , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[14]  Patrice Ossona de Mendez,et al.  Regular Orientations, Arboricity, and Augmentation , 1994, Graph Drawing.

[15]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[16]  Klaus Jansen One Strike Against the Min-max Degree Triangulation Problem , 1992, Comput. Geom..

[17]  Giuseppe Di Battista,et al.  Angles of Planar Triangular Graphs , 1996, SIAM J. Discret. Math..

[18]  András Frank Augmenting Graphs to Meet Edge-Connectivity Requirements , 1992, SIAM J. Discret. Math..

[19]  K. Onaga,et al.  A linear time augmenting algorithm for 3-edge-connectivity augmentation problems , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[20]  Roberto Tamassia,et al.  Planar Drawings and Angular Resolution: Algorithms and Bounds (Extended Abstract) , 1994, ESA.

[21]  Ioannis G. Tollis,et al.  Algorithms for automatic graph drawing: an annotated bibliography , 1994 .

[22]  Harold N. Gabow,et al.  Applications of a poset representation to edge connectivity and graph rigidity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[23]  Charles U. Martel,et al.  A Fast Algorithm for Optimally Increasing the Edge Connectivity , 1997, SIAM J. Comput..

[24]  Tsan-sheng Hsu,et al.  On Finding a Smallest Augmentation to Biconnect a Graph , 1991, ISA.

[25]  Charles U. Martel,et al.  A fast algorithm for optimally increasing the edge-connectivity , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[26]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[27]  G. Kant Algorithms for drawing planar graphs , 1993 .

[28]  Goos Kant,et al.  Augmenting Outerplanar Graphs , 1996, J. Algorithms.

[29]  T. Hsu,et al.  On four-connecting a triconnected graph , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.