Review on thermal and mechanical challenges in the development of deployable space optics

Abstract. Deployable optics promise a revolution in the capability of observing the universe by delivering drastically reduced mass and volume needs for a desired level of performance compared to their conventional counterparts. However, this places new demands on the mechanical and thermal designs of new telescopes, essentially trading mass and volume for structural and control complexity. We compile the thermomechanical challenges that should be taken into consideration when designing optical space systems, as well as summarize 14 projects proposed to address them. Stringent deployment repeatability requirements demand low hysteresis, whereas stability requirements require high stiffness, proper thermal management, and active optics.

[1]  Paul C. Janzen,et al.  Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms , 2010 .

[2]  Sergio Pellegrino,et al.  Shape Accuracy of a Joint-Dominated Deployable Mast , 2010 .

[3]  Just L. Herder,et al.  A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings , 2015 .

[4]  James H. Burge,et al.  UltraLITE glass/composite hybrid mirror , 2000, Astronomical Telescopes + Instrumentation.

[5]  Gyula Greschik,et al.  High-Fidelity Gravity Offloading System for Free-Free Vibration Testing , 2007 .

[6]  A. R. DEVELOPMENT AND VALIDATION OF REACTION WHEEL DISTURBANCE MODELS : EMPIRICAL MODEL , 2001 .

[7]  Guglielmo S. Aglietti,et al.  Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels , 2017 .

[8]  P. Bely The Design and Construction of Large Optical Telescopes , 2010 .

[9]  Lee D. Peterson,et al.  Dimensional Repeatability of an Elastically Folded Composite Hinge for Deployed Spacecraft Optics , 2002 .

[10]  Damir Čemerin,et al.  IV , 2011 .

[11]  Craig Underwood,et al.  Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) , 2015 .

[12]  Sergio Pellegrino,et al.  Multilayer active shell mirrors for space telescopes , 2016, Astronomical Telescopes + Instrumentation.

[13]  Mitsuhito Komatsu,et al.  University of Tokyo Nano Satellite Project “PRISM” , 2009 .

[14]  Armando Riccardi,et al.  Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes , 2017, International Conference on Space Optics.

[15]  Cameron H. Parvini,et al.  Detection and Characterization of Micrometeoroids with LISA Pathfinder , 2015, 1510.06374.

[16]  J. Scott Knight,et al.  JWST mirror and actuator performance at cryo-vacuum , 2018, Astronomical Telescopes + Instrumentation.

[17]  M. Levine The Interferometry Program Flight Experiments: IPEX I & II , 1998 .

[18]  M S Lake,et al.  Experimental Characterization of Hysteresis in a Revolute Joint for Precision Deployable Structures , 1997 .

[19]  D. Dolkens,et al.  The deployable telescope: a cutting-edge solution for high spatial and temporal resolved Earth observation , 2018 .

[20]  H. Philip Stahl,et al.  Enabling future space telescopes: mirror technology review and development roadmap , 2009 .

[21]  Y. Tanigawa,et al.  Fundamental thermo-elasticity equations for thermally induced flexural vibration problems for inhomogeneous plates and thermo-elastic dynamical responses to a sinusoidally varying surface temperature , 2008 .

[22]  Peter A. Warren,et al.  Experimental characterization of deployable outer barrel assemblies for large space telescopes , 2013, Optics & Photonics - Optical Engineering + Applications.

[23]  A. Elgafy,et al.  Numerical and Experimental Investigations of Melting and Solidification Processes of High Melting Point PCM in a Cylindrical Enclosure , 2004 .

[24]  Jonathan W. Arenberg,et al.  Status of the JWST sunshield and spacecraft , 2016, Astronomical Telescopes + Instrumentation.

[25]  P. Strevens Iii , 1985 .

[26]  S Lake Mark,et al.  A Deployable Primary Mirror for Space Telescopes , 1999 .

[27]  Lee D. Peterson,et al.  Submicron Mechanical Stability of a Prototype Deployable Space Telescope Support Structure , 1999 .

[28]  Mark Silver,et al.  Precision High Strain Composite Hinges for the Deployable In-Space Coherent Imaging Telescope , 2016 .

[29]  Kevin Schulz,et al.  HabEx Lite: a starshade-only habitable exoplanet imager alternative , 2018, Astronomical Telescopes + Instrumentation.

[30]  Ř. řády,et al.  VI , 2011 .

[31]  F. E. Ostrem Transportation and handling loads , 1971 .

[32]  Dae-Kwan Kim,et al.  Micro-vibration model and parameter estimation method of a reaction wheel assembly , 2014 .

[33]  Steven A. Lane,et al.  Active Vibration Control of a Deployable Optical Telescope , 2008 .

[34]  Jan-Willem Arink Thermal-Mechanical Design of a Baffle: for the Deployable Space Telescope , 2019 .

[35]  Lee D. Feinberg,et al.  Optical budgeting for LUVOIR , 2018, Astronomical Telescopes + Instrumentation.

[36]  Michael A. Echter,et al.  Recent Developments in Precision High Strain Composite Hinges for Deployable Space Telescopes , 2018 .

[37]  Joseph M. Howard Optical modeling activities for the James Webb Space Telescope (JWST) project: I. The linear optical model , 2004, SPIE Optics + Photonics.

[38]  Ashish Goel,et al.  AAReST Autonomous Assembly Reconfigurable Space Telescope Flight Demonstrator , 2018 .

[39]  Larry Gilman,et al.  Technology Development for Large Deployable Sunshield to Achieve Cryogenic Environment , 2004 .

[40]  Peiman Maghami,et al.  Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory , 2008 .

[41]  Tom Segert,et al.  Dobson space telescope: development of an optical payload of the next generation , 2017, International Conference on Space Optics.

[42]  Lee D. Peterson,et al.  Submicron friction mechanics at ambient and cryogenic temperatures , 2005, SPIE Optics + Photonics.

[43]  Guglielmo S. Aglietti,et al.  Conventional stable structures for space optics: The state of the art , 2010 .

[44]  J. Scott Knight,et al.  Material selection for far Infrared telescope mirrors , 2018, Astronomical Telescopes + Instrumentation.

[45]  J. S. Lai,et al.  Creep and Relaxation of Nonlinear Viscoelastic Materials: With an Introduction to Linear Viscoelasticity , 2012 .

[46]  Alessandro Zuccaro Marchi,et al.  Large aperture telescope for advanced lidar system , 2010 .

[47]  Joseph M. Howard,et al.  Optical modeling activities for NASA's James Webb Space Telescope (JWST): Part V. Operational alignment updates , 2008, Astronomical Telescopes + Instrumentation.

[48]  Stephen Todd,et al.  A Segmented Deployable Primary Mirror for Earth Observation from a CubeSat Platform , 2016 .

[49]  Stephen A. Rinehart,et al.  Review: far-infrared instrumentation and technological development for the next decade , 2017, Journal of Astronomical Telescopes, Instruments, and Systems.

[50]  Earl A. Thornton,et al.  Thermally induced bending vibrations of a flexible rolled-up solar array , 1993 .

[51]  Tom Segert,et al.  DOBSON SPACE TELESCOPE THE FUTURE OF MICROSAT BASED OBSERVATION , 2005 .

[52]  Takashi Tanaka,et al.  Extensible Flexible Optical System for Nano-scale Remote Sensing Satellite “PRISM” , 2009 .

[53]  Robert M. Warden,et al.  Cryogenic Nano-Actuator for JWST , 2012 .

[54]  Joseph M. Howard,et al.  Integrated modeling activities for the James Webb Space Telescope: optical jitter analysis , 2004, SPIE Astronomical Telescopes + Instrumentation.

[55]  P. Salinari,et al.  An ultra-lightweight, large aperture, deployable telescope for advanced lidar applications , 2017, International Conference on Space Optics.

[56]  R. Kadoli,et al.  Thermal induced motion of functionally graded beams subjected to surface heating , 2015 .

[57]  Layton C. Hale,et al.  Optimal design techniques for kinematic couplings , 2001 .

[58]  Troy E. Meink,et al.  Structural design for deployable optical telescopes , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[59]  Joseph M. Howard Optical integrated modeling activities for the James Webb Space Telescope (JWST) , 2011, Other Conferences.

[60]  Lee Peterson,et al.  NANOMETER SCALE SPONTANEOUS VIBRATIONS IN A DEPLOYABLE TRUSS UNDER MECHANICAL LOADING , 2001 .

[61]  E. Atad-Ettedgui,et al.  Large aperture telescope technology: a design for an active lightweight multi-segmented fold-out space mirror , 2017, International Conference on Space Optics.

[62]  Marie Levine,et al.  Material damping experiments at cryogenic temperatures , 2003, SPIE Optics + Photonics.

[63]  Lee D. Feinberg,et al.  Optical modeling activities for NASA's James Webb Space Telescope (JWST): VI. secondary mirror figure compensation using primary mirror segment motions , 2009, Optical Engineering + Applications.

[64]  Charles B. Atkinson,et al.  Design and Development of the Primary and Secondary Mirror Deployment Systems for the Cryogenic JWST , 2012 .

[65]  G Richardson,et al.  A novel deployable telescope to facilitate a low-cost <1m GSD video rapid-revisit small satellite constellation , 2019, International Conference on Space Optics.

[66]  J. Scott Knight,et al.  Observatory alignment of the James Webb Space Telescope , 2012, Other Conferences.

[67]  B. A. Boley,et al.  Survey of recent developments in the fields of heat conduction in solids and thermo-elasticity , 1972 .

[68]  Micro-plasticity and recent insights from intermittent and small-scale plasticity , 2017, 1704.07297.

[69]  Kong Q. Ha,et al.  Optical modeling activities for the James Webb Space Telescope (JWST) project: II. Determining image motion and wavefront error over an extended field of view with a segmented optical system , 2004, SPIE Astronomical Telescopes + Instrumentation.

[70]  Bernd Gerlach,et al.  LOW NOISE FIVE-AXIS MAGNETIC BEARING REACTION WHEEL , 2006 .

[71]  Edward F. Crawley,et al.  Microdynamic Characterization of Modal Parameters for a Deployable Space Structure , 2001 .

[72]  C. Foster,et al.  Solar-array-induced disturbance of the Hubble Space Telescope pointing system , 1995 .

[73]  Shinichi Nakasuka,et al.  Attitude Stabilization for the Nano Remote Sensing Satellite PRISM , 2013 .

[74]  Joseph M. Howard Optical modeling activities for NASA's James Webb Space Telescope (JWST): IV. Overview and introduction of MATLAB based toolkits used to interface with optical design software , 2007, SPIE Optical Engineering + Applications.

[75]  Mark S. Lake,et al.  Rationale for Defining Structural Requirements for Large Space Telescopes , 2002 .

[76]  Pascal Hallibert,et al.  Developments in active optics for space instruments: an ESA perspective , 2016, Astronomical Telescopes + Instrumentation.

[77]  Yool A. Kim,et al.  Thermal creak induced dynamics of space structures , 1999 .

[78]  Joseph M. Howard Optical modeling activities for NASA's James Webb Space Telescope (JWST): III. Wavefront aberrations due to alignment and figure compensation , 2007, SPIE Optical Engineering + Applications.

[79]  Simon D. Guest,et al.  On zero stiffness , 2014 .

[80]  Zensheu Chang,et al.  Extracting the zero-gravity surface figure of a mirror through multiple clockings in a flightlike hexapod mount. , 2009, Applied optics.

[82]  Lawrence Robertson,et al.  Assessment of a large aperture telescope trade space and active opto-mechanical control architecture , 1997, 1997 IEEE Aerospace Conference.

[83]  D. Dolkens,et al.  A deployable telescope for sub-meter resolutions from microsatellite platforms , 2017, International Conference on Space Optics.

[84]  Jo Ann Dauzat,et al.  Part V , 1997, Hydrobiologia.

[85]  S. Golwala,et al.  Material Selection for Cryogenic Support Structures , 2014 .

[86]  M. Eslami,et al.  Rapid heating of FGM rectangular plates , 2016 .

[87]  Lee D. Feinberg,et al.  Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope , 2016, Journal of astronomical telescopes, instruments, and systems.

[88]  Mark S. Lake,et al.  A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures , 1996 .

[89]  Stephen Todd,et al.  Laboratory Demonstration of an Active Optics System for High-Resolution Deployable CubeSat , 2018, 1809.09097.

[90]  Elwood Agasid,et al.  Collapsible Space Telescope (CST) for Nanosatellite Imaging and Observation , 2013 .

[91]  André Krikken Design of the Secondary Mirror Support Structure for the Deployable Space Telescope , 2018 .

[92]  J. W. Lopes Barreto Deployable Space Telescope: Optimal Boom Design for High Precision Deployment of the Secondary Mirror , 2017 .

[93]  Paul A. Lightsey,et al.  James Webb Space Telescope: large deployable cryogenic telescope in space , 2012 .

[94]  Marie Levine,et al.  Microdynamic issues in large deployable space telescopes , 2001, SPIE Optics East.

[95]  Trevor J. Bihl,et al.  Modeling and control of active gravity off-loading for deployable space structures , 2007, SPIE Defense + Commercial Sensing.

[96]  Joseph M. Howard,et al.  Space telescope design considerations , 2012 .

[97]  Robert N. Coppolino,et al.  Midfrequency band dynamics of large space structures , 2004, SPIE Optics + Photonics.

[98]  Sergio Pellegrino,et al.  Design of Ultrathin Composite Self-Deployable Booms , 2014 .

[99]  R. S. Erwin,et al.  Integrated control system development for phasing and vibration suppression for a sparse-array telescope , 2002, SPIE Astronomical Telescopes + Instrumentation.

[100]  Mark S. Lake,et al.  Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis , 2000 .

[101]  Lee D. Feinberg,et al.  ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions , 2015, SPIE Optical Engineering + Applications.

[102]  Martin Gohlke,et al.  Picometer resolution interferometric characterization of the dimensional stability of zero CTE CFRP , 2008, Astronomical Telescopes + Instrumentation.

[103]  Jason D. Hinkle,et al.  Microdynamic Design Requirements for Large Space Structures , 2003 .

[104]  Peter A. Warren,et al.  Lightweight optical barrel assembly structures for large deployable space telescopes , 2009, Optical Engineering + Applications.

[105]  Scott Hansen,et al.  CubeSat Image Resolution Capabilities with Deployable Optics and Current Imaging Technology , 2014 .

[106]  Keith Parrish,et al.  Integrated modeling activities for the James Webb Space Telescope: structural-thermal-optical analysis , 2004, SPIE Astronomical Telescopes + Instrumentation.

[107]  S. Fransen,et al.  Opto-mechanical modeling of the Herschel Space Telescope at ESA/ESTEC , 2011, Other Conferences.

[108]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[109]  Lee D. Peterson,et al.  What limits the achievable areal densities of large aperture space telescopes? , 2005, SPIE Optics + Photonics.

[110]  Lee D. Feinberg,et al.  JWST primary mirror material selection , 2004, SPIE Astronomical Telescopes + Instrumentation.