Kohonen map-wise regression applied to interval data
暂无分享,去创建一个
Telmo de Menezes e Silva Filho | Renata M. C. R. de Souza | Bruno A. Pimentel | Leandro Carlos de Souza | R. Souza | L. C. Souza | T. S. Filho
[1] A. Mechelli,et al. Clustering analysis , 2020, Machine Learning.
[2] Cristian Arteaga,et al. A clusterwise regression approach for the estimation of crash frequencies , 2019, Journal of Transportation Safety & Security.
[3] Renata M. C. R. de Souza,et al. Polygonal data analysis: A new framework in symbolic data analysis , 2019, Knowl. Based Syst..
[4] Roberta A. de A. Fagundes,et al. Interval quantile regression models based on swarm intelligence , 2018, Appl. Soft Comput..
[5] Francisco de A. T. de Carvalho,et al. An exponential-type kernel robust regression model for interval-valued variables , 2018, Inf. Sci..
[6] Alexander Paz,et al. Comprehensive clusterwise linear regression for pavement management systems , 2017 .
[7] Peng Hao,et al. Constrained center and range joint model for interval-valued symbolic data regression , 2017, Comput. Stat. Data Anal..
[8] Telmo de Menezes e Silva Filho,et al. A parametrized approach for linear regression of interval data , 2017, Knowl. Based Syst..
[9] Renata M. C. R. de Souza,et al. Predicting symbolic interval-valued data through symmetrical nonlinear regression , 2017, Int. J. Bus. Intell. Data Min..
[10] Adil M. Bagirov,et al. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach , 2017 .
[11] Eufrásio de A. Lima Neto,et al. Nonlinear regression applied to interval-valued data , 2017 .
[12] Changwon Lim,et al. Interval-valued data regression using nonparametric additive models , 2016 .
[13] Edwin Diday,et al. Thinking by classes in data science: the symbolic data analysis paradigm , 2016 .
[14] Francisco de A. T. de Carvalho,et al. Batch SOM algorithms for interval-valued data with automatic weighting of the variables , 2016, Neurocomputing.
[15] Renata M. C. R. de Souza,et al. A weighted multivariate Fuzzy C-Means method in interval-valued scientific production data , 2014, Expert Syst. Appl..
[16] Renata M. C. R. de Souza,et al. Interval kernel regression , 2014, Neurocomputing.
[17] Pierpaolo D'Urso,et al. Self-Organizing Maps for imprecise data , 2014, Fuzzy Sets Syst..
[18] Telmo de Menezes e Silva Filho,et al. Fuzzy learning vector quantization approaches for interval data , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
[19] Paolo Chirico. A Clusterwise Regression Method for the Prediction of the Disposal Income in Municipalities , 2013, Classification and Data Mining.
[20] Renata M. C. R. de Souza,et al. Robust regression with application to symbolic interval data , 2013, Eng. Appl. Artif. Intell..
[21] Teuvo Kohonen,et al. Essentials of the self-organizing map , 2013, Neural Networks.
[22] Miin-Shen Yang,et al. Self-organizing map for symbolic data , 2012, Fuzzy Sets Syst..
[23] Diego Vidaurre,et al. SOMwise regression: a new clusterwise regression method , 2011, Neural Computing and Applications.
[24] Pierpaolo D'Urso,et al. Midpoint radius self-organizing maps for interval-valued data with telecommunications application , 2011, Appl. Soft Comput..
[25] G. Cordeiro,et al. Bivariate symbolic regression models for interval-valued variables , 2011 .
[26] Renata M. C. R. de Souza,et al. A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..
[27] Danilo N. Queiroz,et al. A Clusterwise Center and Range Regression Model for Interval-Valued Data , 2010, COMPSTAT.
[28] Francisco de A. T. de Carvalho,et al. Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..
[29] Francisco de A. T. de Carvalho,et al. Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..
[30] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[31] Helmuth Späth,et al. Algorithm 39 Clusterwise linear regression , 1979, Computing.
[32] Hans-Hermann Bock. 6. Symbolic Data Analysis , 2003 .
[33] Christian Hennig,et al. Models and Methods for Clusterwise Linear Regression , 1999 .
[34] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[35] T. Kohonen. SELF-ORGANIZING MAPS: OPHMIZATION APPROACHES , 1991 .