Kohonen map-wise regression applied to interval data

[1]  A. Mechelli,et al.  Clustering analysis , 2020, Machine Learning.

[2]  Cristian Arteaga,et al.  A clusterwise regression approach for the estimation of crash frequencies , 2019, Journal of Transportation Safety & Security.

[3]  Renata M. C. R. de Souza,et al.  Polygonal data analysis: A new framework in symbolic data analysis , 2019, Knowl. Based Syst..

[4]  Roberta A. de A. Fagundes,et al.  Interval quantile regression models based on swarm intelligence , 2018, Appl. Soft Comput..

[5]  Francisco de A. T. de Carvalho,et al.  An exponential-type kernel robust regression model for interval-valued variables , 2018, Inf. Sci..

[6]  Alexander Paz,et al.  Comprehensive clusterwise linear regression for pavement management systems , 2017 .

[7]  Peng Hao,et al.  Constrained center and range joint model for interval-valued symbolic data regression , 2017, Comput. Stat. Data Anal..

[8]  Telmo de Menezes e Silva Filho,et al.  A parametrized approach for linear regression of interval data , 2017, Knowl. Based Syst..

[9]  Renata M. C. R. de Souza,et al.  Predicting symbolic interval-valued data through symmetrical nonlinear regression , 2017, Int. J. Bus. Intell. Data Min..

[10]  Adil M. Bagirov,et al.  Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach , 2017 .

[11]  Eufrásio de A. Lima Neto,et al.  Nonlinear regression applied to interval-valued data , 2017 .

[12]  Changwon Lim,et al.  Interval-valued data regression using nonparametric additive models , 2016 .

[13]  Edwin Diday,et al.  Thinking by classes in data science: the symbolic data analysis paradigm , 2016 .

[14]  Francisco de A. T. de Carvalho,et al.  Batch SOM algorithms for interval-valued data with automatic weighting of the variables , 2016, Neurocomputing.

[15]  Renata M. C. R. de Souza,et al.  A weighted multivariate Fuzzy C-Means method in interval-valued scientific production data , 2014, Expert Syst. Appl..

[16]  Renata M. C. R. de Souza,et al.  Interval kernel regression , 2014, Neurocomputing.

[17]  Pierpaolo D'Urso,et al.  Self-Organizing Maps for imprecise data , 2014, Fuzzy Sets Syst..

[18]  Telmo de Menezes e Silva Filho,et al.  Fuzzy learning vector quantization approaches for interval data , 2013, 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[19]  Paolo Chirico A Clusterwise Regression Method for the Prediction of the Disposal Income in Municipalities , 2013, Classification and Data Mining.

[20]  Renata M. C. R. de Souza,et al.  Robust regression with application to symbolic interval data , 2013, Eng. Appl. Artif. Intell..

[21]  Teuvo Kohonen,et al.  Essentials of the self-organizing map , 2013, Neural Networks.

[22]  Miin-Shen Yang,et al.  Self-organizing map for symbolic data , 2012, Fuzzy Sets Syst..

[23]  Diego Vidaurre,et al.  SOMwise regression: a new clusterwise regression method , 2011, Neural Computing and Applications.

[24]  Pierpaolo D'Urso,et al.  Midpoint radius self-organizing maps for interval-valued data with telecommunications application , 2011, Appl. Soft Comput..

[25]  G. Cordeiro,et al.  Bivariate symbolic regression models for interval-valued variables , 2011 .

[26]  Renata M. C. R. de Souza,et al.  A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..

[27]  Danilo N. Queiroz,et al.  A Clusterwise Center and Range Regression Model for Interval-Valued Data , 2010, COMPSTAT.

[28]  Francisco de A. T. de Carvalho,et al.  Constrained linear regression models for symbolic interval-valued variables , 2010, Comput. Stat. Data Anal..

[29]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[30]  Hans-Hermann Bock,et al.  Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..

[31]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[32]  Hans-Hermann Bock 6. Symbolic Data Analysis , 2003 .

[33]  Christian Hennig,et al.  Models and Methods for Clusterwise Linear Regression , 1999 .

[34]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[35]  T. Kohonen SELF-ORGANIZING MAPS: OPHMIZATION APPROACHES , 1991 .