Turbulence modelling and turbulent-flow computation in aeronautics

Competitive pressures and economic constraints are driving aircraft manufacturers towards an ever-increasing exploitation of CFD for design, optimisation and prediction of off-design conditions. Such exploitation is favoured by rapid advances in meshing technology, numerical algorithms, visualisation tools and computer hardware. In contrast, the predictive capabilities of mathematical models of turbulence are limited - indeed, are often poor in regions of complex strain - and improve only slowly. The intuitive nature of turbulence modelling, its strong reliance on calibration and validation and the extreme sensitivity of model performance to seemingly minor variations in modelling details and flow conditions all conspire to make turbulence modelling an especially challenging component of CFD, but one that is crucially important for the correct prediction of complex flows. This article attempts to provide a broad review of the current status of turbulence modelling for aeronautical applications, both from physical and numerical points of view. The review is preceded and underpinned by a discussion of key fundamental issues and processes, based on the exact equations governing the Reynolds stresses

[1]  Otto Zeman,et al.  A new model for super/hypersonic turbulent boundary layers , 1993 .

[2]  K. Chien,et al.  Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model , 1982 .

[3]  T. Gatski,et al.  Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach , 1991, Journal of Fluid Mechanics.

[4]  George N. Barakos,et al.  Implicit unfactored implementation of two‐equation turbulence models in compressible Navier–Stokes methods , 1998 .

[5]  Philippe R. Spalart,et al.  Direct simulation of a turbulent oscillating boundary layer , 1989 .

[6]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[7]  Michael M. Gibson,et al.  Two-equation model for turbulent wall flow , 1995 .

[8]  N. N. Mansour,et al.  Near-wall k-E turbulence modeling , 1989 .

[9]  F. P. Bertolotti,et al.  Compressibility effects due to turbulent fluctuations , 1996 .

[10]  Fue-Sang Lien Computational modelling of 3D flow in complex ducts and passages , 1992 .

[11]  Philippe R. Spalart,et al.  Simulation Of Turbulent, Oscillating Boundary Layer , 1990 .

[12]  E. Juntasaro,et al.  Calculation of oscillating boundary layers with the q-ζ turbulence model , 1996 .

[13]  W. L. Chen,et al.  Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations , 1996 .

[14]  Wei Shyy,et al.  A pressure-based FMG/FAS algorithm for flow at all speeds , 1992 .

[15]  Stavros Tavoularis,et al.  Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1 , 1981, Journal of Fluid Mechanics.

[16]  Jubaraj Sahu,et al.  Navier-Stokes computations of transonic flows with a two-equation turbulence model , 1986 .

[17]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[18]  Sutanu Sarkar,et al.  The pressure-dilatation correlation in compressible flows , 1992 .

[19]  Budugur Lakshminarayana,et al.  Explicit Navier-Stokes computation of cascade flows using the k-epsilon turbulence model , 1992 .

[20]  Suad Jakirlić,et al.  Computation of Oscillating Turbulent Flows at Transitional Re-Numbers , 1995 .

[21]  T. Gatski,et al.  On explicit algebraic stress models for complex turbulent flows , 1992, Journal of Fluid Mechanics.

[22]  Masud Behnia,et al.  Computation of 3-D Turbulent Boundary Layers Using the V2F Model , 1998 .

[23]  Francis H. Harlow,et al.  TRANSPORT OF TURBULENCE ENERGY DECAY RATE. , 1968 .

[24]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[25]  J. Délery Turbulent Shear-Layer/Shock-Wave Interactions , 1986 .

[26]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[27]  P. Bradshaw,et al.  Compressible turbulent channel flows: DNS results and modelling , 1995, Journal of Fluid Mechanics.

[28]  Sharath S. Girimaji,et al.  A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows , 1997 .

[29]  Ernst Heinrich Hirschel,et al.  Numerical Solutions of the Euler Equations for Steady Flow Problems , 1992 .

[30]  Ken-ichi Abe,et al.  Investigation of Anisotropy-Resolving Turbulence Models by Reference to Highly-Resolved LES Data for Separated Flow , 2002 .

[31]  Suad Jakirlić,et al.  Modeling Turbulent Wall Flows Subjected to Strong Pressure Variations , 1999 .

[32]  J. J. McGuirk,et al.  Assessment of turbulence model performance for transonic flow over an axisymmetric bump , 2001, The Aeronautical Journal (1968).

[33]  F. R. Menter,et al.  Influence of freestream values on k-omega turbulence model predictions , 1992 .

[34]  Frank Thiele,et al.  On the Realizability of Nonlinear Stress–Strain Relationships for Reynolds Stress Closures , 1998 .

[35]  Paul S. Granville Baldwin-Lomax factors for turbulent boundary layers in pressure gradients , 1987 .

[36]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[37]  George N. Barakos,et al.  NUMERICAL SIMULATION OF TRANSONIC BUFFET FLOWS USING VARIOUS TURBULENCE CLOSURES , 2000, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[38]  D. Drikakis,et al.  Uniformly High Order Methods for Unsteady Incompressible Flows , 2001 .

[39]  Ulgen Gulcat Separate numerical treatment of attached and detached flow regions in general viscous flows , 1981 .

[40]  James J. McGuirk,et al.  Shock capturing using a pressure-correction method , 1989 .

[41]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[42]  Feng Liu,et al.  A staggered finite volume scheme for solving cascade flow with a two-equation model of turbulence , 1993 .

[43]  S. Patankar,et al.  Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations , 1988 .

[44]  J. B. Mcdevitt,et al.  Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility , 1985 .

[45]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[46]  L. J. S. Bradbury,et al.  The structure of a self-preserving turbulent plane jet , 1965, Journal of Fluid Mechanics.

[47]  H. Loyau,et al.  Modelling shock-affected near-wall flows with anisotropy-resolving turbulence closures , 2000 .

[48]  Jerzy Zóltak,et al.  Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder , 1998 .

[49]  Alan J. Wadcock,et al.  Flying-hot-wire study of two-dimensional mean flow past an NACA 4412 airfoil at maximum lift , 1978 .

[50]  Brian Launder,et al.  Second-moment modelling of compressible mixing layers , 1993 .

[51]  U. Goldberg,et al.  a Pointwise Version of Baldwin-Barth Turbulence Model , 1993 .

[52]  D. Wilcox Simulation of Transition with a Two-Equation Turbulence Model , 1994 .

[53]  H. Hassan,et al.  Further Development of the k-? (Enstrophy) Turbulence Closure Model , 1998 .

[54]  John David Anderson,et al.  A History of Aerodynamics , 1997 .

[55]  William W. Liou,et al.  Transonic turbulent flow predictions with new two-equation turbulence models , 1995 .

[56]  Francis H. Harlow,et al.  Transport Equations in Turbulence , 1970 .

[57]  Viktoria Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[58]  V. C. Patel,et al.  Turbulence models for near-wall and low Reynolds number flows - A review , 1985 .

[59]  P. Bradshaw Calculation of boundary-layer development using the turbulent energy equation , 1967, Journal of Fluid Mechanics.

[60]  T. B. Gatski,et al.  Towards a rational model for the triple velocity correlations of turbulence , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[61]  D. Drikakis,et al.  Investigation of nonlinear eddy-viscosity turbulence models in shock/boundary-layer interaction , 2000 .

[62]  Fue-Sang Lien,et al.  A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation , 1994 .

[63]  J. Lumley,et al.  A Realizable Reynolds Stress Algebraic Equation Model , 1993 .

[64]  M. Leschziner,et al.  Computational modelling of three-dimensional impinging jets with and without cross-flow using second-moment closure , 1995 .

[65]  Fue-Sang Lien,et al.  Numerical Aspects of Applying Second-Moment Closure to Complex Flows , 2001 .

[66]  William W. Liou,et al.  Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flows , 2000 .

[67]  Song Fu,et al.  Modelling strongly swirling recirculating jet flow with Reynolds-stress transport closures , 1987 .

[68]  A. Gould,et al.  Application of two-equation turbulence models in aircraft design , 1996 .

[69]  John A. Ekaterinaris,et al.  Computation of oscillating airfoil flows with one- and two-equation turbulence models , 1994 .

[70]  D. Vandromme,et al.  Physical analysis and second-order modelling of an unsteady turbulent flow - The oscillating boundary layer on a flat plate , 1989 .

[71]  David D. Apsley,et al.  Advanced Turbulence Modelling of Separated Flow in a Diffuser , 2000 .

[72]  Xiaohua Wu,et al.  Prediction of the Three-Dimensional Turbulent Boundary Layer over a Swept Bump , 1998 .

[73]  W. Rodi,et al.  Influence of buoyancy and rotation on equations for the turbulent length scale , 1979 .

[74]  David S. Dolling,et al.  High-Speed Turbulent Separated Flows: Consistency of Mathematical Models and Flow Physics , 1998 .

[75]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[76]  D. Drikakis,et al.  Unsteady separated flows over manoeuvring lifting surfaces , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[77]  Isabelle Vallet,et al.  Aerodynamique numerique 3-d instationnaire avec fermeture bas-reynolds au second ordre , 1995 .

[78]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[79]  M. Wolfshtein The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient , 1969 .

[80]  Arne V. Johansson,et al.  Anisotropic Dissipation Rate — Implications for Reynolds Stress Models , 1991 .

[81]  Brian Launder,et al.  New Wall-Reflection Model Applied to the Turbulent Impinging Jet , 1992 .

[82]  M. A. Leschziner,et al.  Computational modelling of separated flow around a streamlined body at high incidence , 1997, The Aeronautical Journal (1968).

[83]  Masayuki Kashiwayanagi,et al.  Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow , 1983, Journal of Fluid Mechanics.

[84]  Paul Batten,et al.  Modelling Shock/Boundary-Layer Interaction with Nonlinear Eddy-Viscosity Closures , 1998 .

[85]  D. A. Johnson,et al.  Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model , 1986 .

[86]  D. Spalding,et al.  Heat and Mass Transfer in Boundary Layers. 2nd edition. By S. V. PATANKAR and D. B. SPALDING. Intertext Books, 1970. 255 pp. £6. , 1971, Journal of Fluid Mechanics.

[87]  B. Launder,et al.  Development and application of a cubic eddy-viscosity model of turbulence , 1996 .

[88]  W. Haase,et al.  ECARP - European computational aerodynamics research project : validation of CFD codes and assessment of turbulence models , 1997 .

[89]  David D. Apsley,et al.  A turbulence model study of separated 3D jet/afterbody flow , 2004 .

[90]  D. A. Johnson,et al.  A MATHEMATICALLY SIMPLE TURBULENCE CLOSURE MODEL FOR ATTACHED AND SEPARATED TURBULENT BOUNDARY LAYERS , 1985 .

[91]  F. Menter Influence of Freestream Values on ku Turbulence Model Predictions , 2003 .

[92]  V. Vatsa,et al.  Prediction of separated transonic wing flows with a non-equilibrium algebraic model , 1989 .

[93]  P. G. Saffman Results of a two equation model for turbulent flows and development of a relaxation stress model for application to straining and rotating flows , 1977 .

[94]  B. Sumer,et al.  Turbulent oscillatory boundary layers at high Reynolds numbers , 1989, Journal of Fluid Mechanics.

[95]  P. Durbin A Reynolds stress model for near-wall turbulence , 1993, Journal of Fluid Mechanics.

[96]  Tim Craft,et al.  A Reynolds stress closure designed for complex geometries , 1996 .

[97]  Michael A. Leschziner,et al.  Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows , 1997 .

[98]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[99]  Yanwen Ma,et al.  Numerical investigation of dynamic stall of an oscillating aerofoil , 1994 .

[100]  P. Durbin SEPARATED FLOW COMPUTATIONS WITH THE K-E-V2 MODEL , 1995 .

[101]  C. G. Speziale,et al.  Critical Evaluation of Two-Equation Models for Near-Wall Turbulence , 1992 .

[102]  P. Libby,et al.  Analysis of Turbulent Boundary Layers , 1974 .

[103]  F. A. Haidinger,et al.  Numerical simulation of strong shock/turbulent boundary layer interactions using a Reynolds stress model , 1995 .

[104]  F. Menter Performance of popular turbulence model for attached and separated adverse pressure gradient flows , 1992 .

[105]  Yasutaka Nagano,et al.  Improved Form of the k-ε Model for Wall Turbulent Shear Flows , 1987 .

[106]  J. Delery,et al.  INVESTIGATION OF STRONG SHOCK TURBULENT BOUNDARY LAYER INTERACTION IN 2D TRANSONIC FLOWS WITH EMPHASIS ON TURBULENCE PHENOMENA , 1981 .

[107]  David M. Driver,et al.  Reynolds shear stress measurements in a separated boundary layer flow , 1991 .

[108]  Frank Thiele,et al.  Assessment of Explicit Algebraic Stress Models in Transonic Flows , 1999 .

[109]  Alan J. Wadcock,et al.  Flying-Hot-wire Study of Flow Past an NACA 4412 Airfoil at Maximum Lift , 1979 .

[110]  W. Haase EUROVAL : an European initiative on validation of CFD codes : results of the EC/BRITE-EURAM project EUROVAL, 1990-1992 , 1993 .

[111]  J. Rotta,et al.  Statistische Theorie nichthomogener Turbulenz , 1951 .

[112]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[113]  Lars Davidson,et al.  Turbulent Transonic Airfoil Flow Simulation Using a Pressure-Based Algorithm , 1995 .

[114]  Tim Craft,et al.  Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows , 1998 .

[115]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[116]  Uriel Goldberg,et al.  A pointwise version of the Baldwin-Barth turbulence model , 1993 .

[117]  M. Kato The modeling of turbulent flow around stationary and vibrating square cylinders , 1993 .

[118]  L. E. Putnam,et al.  Pitot-Pressure Measurements in Flow Fields Behind a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60, and 1.20 , 1986 .

[119]  J. Délery Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions , 1983 .

[120]  C. C. Shir,et al.  A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer , 1973 .

[121]  P. Bradshaw,et al.  Turbulence Models for Compressible Boundary Layers , 1994 .

[122]  F. Lien,et al.  A Pressure-Velocity Solution Strategy for Compressible Flow and Its Application to Shock/Boundary-Layer Interaction Using Second-Moment Turbulence Closure , 1993 .

[123]  Akira Yoshizawa,et al.  Statistical analysis of the deviation of the Reynolds stress from its eddy‐viscosity representation , 1984 .

[124]  D. Wilcox Multiscale model for turbulent flows , 1986 .

[125]  Robert Rubinstein,et al.  Nonlinear Reynolds stress models and the renormalization group , 1990 .

[126]  S. Jakirlic,et al.  A Model of Stress Dissipation in Second-Moment Closures , 1993 .

[127]  Johannes Janicka,et al.  Nonlinear Second Moment Closure Consistent with Shear and Strain Flows , 1997 .

[128]  J. M. Verdon,et al.  Analysis of Unsteady Compressible Viscous Layers , 1991 .

[129]  Brian Launder,et al.  Second-moment closure for the near-wall sublayer - Development and application , 1989 .

[130]  D. C. Wilcox,et al.  Progress in Turbulence Modeling for Complex Flow F4eMs including Effects of Compressibility , 2022 .

[131]  D. Drikakis,et al.  An implicit unfactored method for unsteady turbulent compressible flows with moving boundaries , 1999 .

[132]  Reda R. Mankbadi,et al.  Quasi-steady turbulence modeling of unsteady flows , 1991 .

[133]  F. Menter Eddy Viscosity Transport Equations and Their Relation to the k-ε Model , 1997 .

[134]  Philip S. Beran,et al.  Numerical Investigation of Supersonic Injection Using a Reynolds-Stress Turbulence Model , 1999 .

[135]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[136]  W. P. Jones,et al.  The Calculation of the Flow through a Two-dimensional Faired Diffuser , 1989 .

[137]  Charles G. Speziale,et al.  Explicit algebraic stress model of turbulence with anisotropic dissipation , 1996 .

[138]  Alain Dervieux,et al.  Computation and comparison of efficient turbulence models for aeronautics - European Research Project ETMA , 1998 .

[139]  G. A. Gerolymos,et al.  Implicit Computation of Three-Dimensional Compressible Navier-Stokes Equations Using k-e Closure , 1996 .

[140]  Nobuyuki Shima,et al.  PREDICTION OF TURBULENT BOUNDARY LAYERS WITH A SECOND-MOMENT CLOSURE: PART I - EFFECTS OF PERIODIC PRESSURE GRADIENT, WALL TRANSPIRATION, AND FREE-STREAM TURBULENCE , 1993 .

[141]  F. Durst,et al.  Parallelization of Inviscid and Viscous Flow Solvers , 1994 .

[142]  Brian Launder,et al.  A Reynolds stress model of turbulence and its application to thin shear flows , 1972, Journal of Fluid Mechanics.

[143]  J. Ballmann,et al.  Assessment of Eddy Viscosity Models in 2D and 3D Shock/Boundary-Layer Interactions , 1999 .

[144]  Jochen Fröhlich,et al.  Lessons from the European LESFOIL project on LES of flow around an airfoil , 2002 .

[145]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[146]  L. Carr Progress in analysis and prediction of dynamic stall , 1988 .

[147]  Christopher L. Rumsey,et al.  Prediction of Nonequilibrium Turbulent Flows with Explicit Algebraic Stress Models , 1995 .

[148]  Philip S. Beran,et al.  K-ε and Reynolds stress turbulence model comparisons for two-dimensional injection flows , 1998 .

[149]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[150]  M. Wolfshtein,et al.  Turbulent time scale for turbulent-flow calculations , 1986 .

[151]  Gordon Erlebacher,et al.  The analysis and modelling of dilatational terms in compressible turbulence , 1989, Journal of Fluid Mechanics.

[152]  Brian Launder,et al.  Sensitizing the Dissipation Equation to Irrotational Strains , 1980 .

[153]  Scot L. Haire,et al.  STRUCTURE-BASED TURBULENCE MODELING FOR WALL-BOUNDED FLOWS , 2000, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[154]  Nobuhide Kasagi,et al.  A New Approach to the Improvement of k-ε Turbulence Model for Wall-Bounded Shear Flows , 1990 .

[155]  Ronald M. C. So,et al.  Second-Order Near-Wall Turbulence Closures: A Review , 1991 .

[156]  Paul Batten,et al.  Reynolds-Stress-Transport Modeling for Compressible Aerodynamics Applications , 1999 .

[157]  U. Mehta,et al.  Starting vortex, separation bubbles and stall: a numerical study of laminar unsteady flow around an airfoil , 1975, Journal of Fluid Mechanics.

[158]  D. Drikakis,et al.  Assessment of various low-Reynolds number turbulence models in shock-boundary layer interaction , 1998 .

[159]  B. Launder,et al.  Ground effects on pressure fluctuations in the atmospheric boundary layer , 1978, Journal of Fluid Mechanics.

[160]  A. Eberle 3D-Euler calculations using characteristic flux extrapolation , 1985 .

[161]  Rainer Friedrich,et al.  Computation of shock wave/turbulent boundary layer interactions using a two-equation model with compressibility corrections , 1993 .

[162]  Otto Zeman,et al.  Dilatation dissipation: The concept and application in modeling compressible mixing layers , 1990 .

[163]  T. B. Gatski,et al.  General explicit algebraic stress relations and best approximation for three-dimensional flows , 1998 .

[164]  C. G. Speziale On nonlinear K-l and K-ε models of turbulence , 1987, Journal of Fluid Mechanics.

[165]  Michael A. Leschziner,et al.  PREDICTION OF SHOCK/BOUNDARY-LAYER INTERACTION WITH NON-LINEAR EDDY-VISCOSITY MODELS , 2000 .

[166]  Sutanu Sarkar,et al.  The stabilizing effect of compressibility in turbulent shear flow , 1994, Journal of Fluid Mechanics.

[167]  Gilbert H. Hoffman Improved form of the low Reynolds number k−ε turbulence model , 1975 .

[168]  Michael Poreh,et al.  A Turbulent Energy Model for Flows With Drag Reduction , 1975 .

[169]  W. Rodi,et al.  Calculation of curved shear layers with two‐equation turbulence models , 1983 .

[170]  Kemal Hanjalic,et al.  Advanced turbulence closure models: a view of current status and future prospects , 1994 .

[171]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[172]  G. J. Hancock,et al.  EUROVAL — A European Initiative on Validation of CFD Codes: Results of the EC/BRITE-EURAM Project EUROVAL 1990-1992 Edited by W. Haase et alVerlag Vieweg, Faulbrunnenstrasse 13, D-65183 Wiesbaden, Postfach 5829, D-65048 Wiesbaden, Germany. 1993. 530pp. Illustrated. DM 148. , 1994, The Aeronautical Journal (1968).

[173]  Wolfgang Rodi,et al.  Low Reynolds number k—ε modelling with the aid of direct simulation data , 1993, Journal of Fluid Mechanics.

[174]  Martin Oberlack,et al.  Non-isotropic dissipation in non-homogeneous turbulence , 1997, Journal of Fluid Mechanics.

[175]  Nobuyuki Shima,et al.  A Reynolds-stress model for near-wall and low-Reynolds-number regions , 1988 .

[176]  Roland Schiestel,et al.  Multiple‐time‐scale modeling of turbulent flows in one‐point closures , 1987 .

[177]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[178]  Dimitris Drikakis,et al.  Wall-Distance-Free Turbulence Models Applied to Incompressible Flows , 1998 .

[179]  Joseph H. Morrison,et al.  Turbulence model predictions of extra-strain rate effects in strongly-curved flows , 1999 .

[180]  Ismail H. Tuncer,et al.  THEORETICAL AND NUMERICAL STUDIES OF OSCILLATING AIRFOILS , 1989 .

[181]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[182]  F. Durst,et al.  Investigation of flux formulae in transonic shock wave/turbulent boundary layer interaction , 1994 .

[183]  O. Lambert,et al.  Dynamic Stall on Advanced Airfoil Sections , 1981 .

[184]  C. Yap Turbulent heat and momentum transfer in recirculating and impinging flows , 1987 .

[185]  Philippe R. Spalart,et al.  Two-Equation Turbulence Modeling of Oscillatory Boundary Layers , 1990 .

[186]  B. Davydov On the Statistical Dynamics of an Incompressible Turbulent Fluid , 1960 .

[187]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[188]  Uriel Goldberg,et al.  Toward a pointwise turbulence model for wall-bounded and free shear flows , 1994 .

[189]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[190]  Lionel L. Levy,et al.  Transonic Flow about a Thick Circular-Arc Airfoil , 1976 .

[191]  Jean Delery,et al.  A Study of Turbulence Modelling in Transonic Shock-Wave Boundary-Layer Interactions , 1989 .

[192]  G. A. Gerolymos,et al.  Near-Wall Reynolds-Stress Three-Dimensional Transonic Flow Computation , 1997 .

[193]  Lars Davidson,et al.  Reynolds stress transport modelling of shock-induced separated flow , 1995 .

[194]  William J. Rider,et al.  High Resolution Methods for Computing Turbulent Flows , 2002 .

[195]  Robert D. Moser,et al.  A numerical study of turbulent supersonic isothermal-wall channel flow , 1995, Journal of Fluid Mechanics.

[196]  Ayodeji O. Demuren,et al.  Systematic Study of Reynolds Stress Closure Models in the Computations of Plane Channel Flows , 1992 .

[197]  George N. Barakos,et al.  Numerical developments in unsteady aerodynamic flows , 2000 .

[198]  Claude Cambon,et al.  LINEAR AND NONLINEAR MODELS OF ANISOTROPIC TURBULENCE , 1999 .

[199]  S. Ying,et al.  Prediction of High-Lift Flows Using Turbulent Closure Models , 1997 .

[200]  C. C. Horstman,et al.  Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows , 1987 .

[201]  B. E. Launder,et al.  Contribution to the Modelling of Near-Wall Turbulence , 1993 .

[202]  D. A. Johnson,et al.  Comparison Between Experiment and Prediction for a Transonic Turbulent Separated Flow , 1982 .

[203]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[204]  Jörn Sesterhenn,et al.  On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .

[205]  Richard Benay,et al.  Two-Equation k-s Turbulence Model: Application to a Supersonic Base Flow , 2001 .

[206]  K.-Y. Fung,et al.  Effects of compressibility on dynamic stall , 1991 .

[207]  Jan Vierendeels,et al.  Computational Treatment of Source Terms in Two-Equation Turbulence Models , 2000 .

[208]  M. D. Salas,et al.  One-equation turbulence model for transonic airfoil flows , 1989 .

[209]  H. L. Norris,et al.  Turbulent channel flow with a moving wavy boundary , 1975 .

[210]  M. A. Leschziner,et al.  Modelling 2D separation from a high lift aerofoil with a non-linear eddy-viscosity model and second-moment closure , 1995, The Aeronautical Journal (1968).

[211]  P. Batten,et al.  Reynolds-stress modelling of transonic afterbody flows , 2001, The Aeronautical Journal (1968).

[212]  Dale B. Taulbee,et al.  Nonlinear Stress -Strain Model Accounting for Dissipation Anisotropies , 2000 .

[213]  N. Kleiser L. Gilbert Turbulence Model Testing with the Aid of Direct Numerical Simulation Results , 1992 .

[214]  John A. Ekaterinaris,et al.  Dynamic stall of an oscillating wing. Part 1: Evaluation of turbulence models , 1993 .

[215]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[216]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[217]  Parviz Moin,et al.  Near-wall k-epsilon turbulence modeling , 1987 .

[218]  F. Durst,et al.  Performance Analysis of Viscous Flow Computations on Various Parallel Architectures , 1994 .

[219]  Joseph H. Morrison,et al.  Prediction of aerodynamic flows with a new explicit algebraic stress model , 1996 .

[220]  Tim Craft,et al.  Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models , 1993 .

[221]  David L. Whitfield,et al.  Navier-Stokes calculations for the unsteady flowfield of turbomachinery , 1993 .

[222]  M. A. Leschziner,et al.  Computational modelling of shock wave/boundary layer interaction with a cell-vertex scheme and transport models of turbulence , 1993, The Aeronautical Journal (1968).

[223]  U. Goldberg,et al.  Hypersonic flow heat transfer prediction using single equation turbulence models , 2001 .

[224]  David D. Apsley,et al.  Investigation of Advanced Turbulence Models for the Flow in a Generic Wing-Body Junction , 2001 .

[225]  Gregory A. Blaisdell,et al.  Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence , 1990 .

[226]  I. Tuncer,et al.  Unsteady aerodynamics of rapidly pitched airfoils , 1986 .

[227]  Dale B. Taulbee,et al.  Application of a new non-linear stress-strain model to axisymmetric turbulent swirling flows , 1993 .

[228]  George N. Barakos,et al.  Improvement to Numerical Predictions of Aerodynamic Flows Using Experimental Data Assimilation , 1999 .

[229]  W. Rodi A new algebraic relation for calculating the Reynolds stresses , 1976 .

[230]  Wolfgang Rodi,et al.  Calculation of Annular and Twin Parallel Jets Using Various Discretization Schemes and Turbulence-Model Variations , 1981 .

[231]  Budugur Lakshminarayana,et al.  Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows , 1993 .

[232]  David D. Apsley,et al.  A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows , 1998 .

[233]  U. Goldberg,et al.  Separated flow treatment with a new turbulence model , 1986 .

[234]  J. L. Fleming,et al.  An experimental study of a turbulent wing-body junction and wake flow , 1992 .

[235]  John L. Lumley,et al.  Computational Modeling of Turbulent Flows , 1978 .

[236]  D. A. Johnson,et al.  Improvements to a nonequilibrium algebraic turbulence model , 1990 .

[237]  Yong G. Lai,et al.  Computational Method of Second-Moment Turbulence Closures in Complex Geometries , 1995 .

[238]  W. C. Reynolds,et al.  Asymptotic near‐wall stress dissipation rates in a turbulent flow , 1983 .

[239]  Arne V. Johansson,et al.  An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows , 2000, Journal of Fluid Mechanics.

[240]  R. M. C. So,et al.  Near-wall modeling of the dissipation rate equation , 1991 .

[241]  J. Pereira,et al.  Predictions of compressible viscous flows at all Mach number using pressure correction, collocated primitive variables and non-orthogonalmeshes , 1992 .

[242]  T. Barth,et al.  A one-equation turbulence transport model for high Reynolds number wall-bounded flows , 1990 .