Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry

The measurement of high temperatures in oxides and oxide-based structures in practical applications often presents challenges including steep thermal gradients, the presence of flames or chemically aggressive environments, and the transparency or translucency of most oxides. For turbine engines, oxide coatings are of great commercial importance, and the rapid motion of parts prohibits contact thermometry. Luminescence thermometry offers a number of advantages for measuring temperature in such systems and has been the subject of ongoing study for many years. Recent work on rare-earth-doped thermal barrier coatings, environmental barrier coatings, and related oxides has demonstrated the feasibility of luminescence thermometry to temperatures well in excess of 1000°C. The luminescent properties of these materials and the analytical techniques used to extract reproducible temperature measurements from the measured luminescence are reviewed.

[1]  Andrew L. Heyes,et al.  Thermographic phosphor thermometry for film cooling studies in gas turbine combustors , 2003 .

[2]  Y. Qian,et al.  Synthesis of closed PbS nanowires with regular geometric morphologies , 2002 .

[3]  Joshua Jortner,et al.  The energy gap law for radiationless transitions in large molecules , 1970 .

[4]  S. Enzo,et al.  Structural investigations and luminescence properties of nanocrystalline europium-doped yttrium silicates prepared by a sol–gel technique , 2007 .

[5]  P. Dorenbos Systematic behaviour in trivalent lanthanide charge transfer energies , 2003 .

[6]  J. Felsche Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7 , 1970 .

[7]  R. M. Cannon,et al.  Cation Segregation in an Oxide Ceramic with Low Solubility: Yttrium Doped α-Alumina , 2002 .

[8]  Robert D. Peacock,et al.  Spectral intensities of the trivalent lanthanides , 1973 .

[9]  A. Bugos,et al.  Laser-induced fluorescent properties of europium-doped scandium orthophosphate phosphors for high-temperature sensing applications , 1991, IEEE Proceedings of the SOUTHEASTCON '91.

[10]  D. Marshall,et al.  Ceramic Composites of Monazite and Alumina , 1995 .

[11]  S. B. Ferraro,et al.  In-Flight Armature Diagnostics , 2007, IEEE Transactions on Magnetics.

[12]  M. Rühle,et al.  Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings , 2005 .

[13]  Rainer Erdmann,et al.  Fast fitting of multi-exponential decay curves , 1997 .

[14]  Katsuhisa Tanaka,et al.  Full color triboluminescence of rare-earth-doped hexacelsian (BaAl2Si2O8) , 1998 .

[15]  A. Dreizler,et al.  Spray thermometry using thermographic phosphors , 2006 .

[16]  Yugami,et al.  Relationship between local structures and ionic conductivity in ZrO2-Y2O3 studied by site-selective spectroscopy. , 1991, Physical review. B, Condensed matter.

[17]  Ruoff,et al.  Pressure dependence of the 4T2 and 4T1 absorption bands of ruby to 35 GPa. , 1990, Physical review. B, Condensed matter.

[18]  W. Ryba-Romanowski,et al.  Quenching of Pr3+ emission in single crystals of K5PrxLa1−xLi2F10 , 2000 .

[19]  S. W. Allison Fluorescence Rise Time Measurements for High Temperature Fluorescence-Based Thermometry , 2005 .

[20]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[21]  Philip R Boudreaux,et al.  Comparison of fluorescence properties for single crystal and polycrystalline YAG:Ce , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[22]  C. H. Kam,et al.  Luminescent properties of rare-earth ion doped yttrium silicate thin film phosphors for a full-colour display , 2002 .

[23]  P. Boudreaux,et al.  Development of Temperature-Sensitive Paints for High Temperature Aeropropulsion Applications , 2001 .

[24]  Mark A. Thomas,et al.  High-temperature remote thermometry using laser-induced fluorescence decay lifetime measurements of Y/sub 2/O/sub 3/:Eu and YAG:Tb thermographic phosphors , 1993 .

[25]  J. Pettersson,et al.  Surface temperature of decomposing construction materials studied by laser‐induced phosphorescence , 2005 .

[26]  D. Clarke,et al.  Effect of Residual Stress on the Luminescence Lifetime of R-Line Emission from Polycrystalline Alumina Formed by Oxidation , 2007 .

[27]  C. B. Thomas,et al.  A thin film coating for phosphor thermography , 1998 .

[28]  David R. Clarke,et al.  Concepts for luminescence sensing of thermal barrier coatings , 2004 .

[29]  W. Ryba-Romanowski,et al.  Luminescence and Energy Transfer in K3GdF6:Pr3+. , 2007 .

[30]  Q. Su,et al.  Luminescence and energy transfer of rare-earth-metal ions in Mg2Y8(SiO4)6O2 , 1995 .

[31]  M. Berkowski,et al.  Photoluminescence studies of Mn4+ ions in YAlO3 crystals at ambient and high pressure , 2006 .

[32]  P. Colomban,et al.  Structural and spectroscopic characterization of the quenched hexacelsian , 2003 .

[33]  J. Yang,et al.  Infiltration‐Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts , 2008 .

[34]  Timothy J. Bencic,et al.  Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors , 2013 .

[35]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[36]  P. Farrell,et al.  Analysis of dopant concentration effects in praseodymium-based fluorescent fiber optic temperature sensors , 2000 .

[37]  M. Gentleman High temperature sensing of thermal barrier materials by luminescence , 2006 .

[38]  Q. Xin,et al.  Blue luminescence of nanocrystalline CaZrO3:Tm phosphors synthesized by a modified Pechini sol–gel method , 2008 .

[39]  Kenneth T. V. Grattan,et al.  Temperature dependence of the fluorescence lifetime in Pr3+:ZBLAN glass for fiber optic thermometry , 1997 .

[40]  H. Scherrer,et al.  Cation self-diffusion of 44Ca, 88Y, and 96Zr in single-crystalline calcia- and yttria-doped zirconia , 2003 .

[41]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[42]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: III, Charge‐Compensating Dopants , 1994 .

[43]  Kenneth T. V. Grattan,et al.  Single-crystal ruby fiber temperature sensor , 2002 .

[44]  N. Hess,et al.  Pressure and temperature dependence of laser‐induced fluorescence of Sm:YAG to 100 kbar and 700 °C and an empirical model , 1990 .

[45]  V. Orera,et al.  Spectroscopy of chromium (III) in yttrium-stabilized ZrO2 , 1989 .

[46]  D. Clarke,et al.  Effects of Reducing Atmosphere on the Luminescence of Eu3+-Doped Yttria-Stabilized Zirconia Sensor Layers in Thermal Barrier Coatings , 2009 .

[47]  Marvin J. Weber,et al.  Luminescence Decay by Energy Migration and Transfer: Observation of Diffusion-Limited Relaxation , 1971 .

[48]  Katsuhisa Tanaka,et al.  Do triboluminescence spectra really show a spectral shift relative to photoluminescence spectra , 2002 .

[49]  J. Hessler,et al.  Fluorescent and dynamic properties of optically excited dysprosium trifluoride , 1984 .

[50]  N. Djeu,et al.  Thermally compensated temperature sensor capable of highly accurate measurements on surfaces. , 2007, The Review of scientific instruments.

[51]  A. Heyes,et al.  The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications , 2000 .

[52]  D. L. Dexter,et al.  Theory of Concentration Quenching in Inorganic Phosphors , 1954 .

[53]  A. Durán,et al.  Yttrium Silicate Coatings for Oxidation Protection of Carbon–Silicon Carbide Composites , 2004 .

[54]  J. G. Solé,et al.  Optical absorption intensities and fluorescence dynamics of ? ions in ? , 1996 .

[55]  P. Childs,et al.  Review of temperature measurement , 2000 .

[56]  Andrew L. Heyes,et al.  Europium-doped yttria-stabilized zirconia for high-temperature phosphor thermometry , 2000 .

[57]  Katsuhisa Tanaka,et al.  Fracto-Luminescence of Rare Earth Element-Doped Hexacelsian (BaAl2Si2O8) , 1997 .

[58]  M. Weber Selective Excitation and Decay of Er 3 + Fluorescence in La F 3 , 1967 .

[59]  M. Faucher,et al.  Site selective spectroscopy and structural analysis of yttria-doped zirconias , 1984 .

[60]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[61]  M. J. Weber,et al.  Probabilities for Radiative and Nonradiative Decay of Er 3 + in La F 3 , 1967 .

[62]  A. Christensen,et al.  Synthesis, Crystal Growth, and Structure Investigations of Rare‐Earth Disilicates and Rare‐Earth Oxyapatites. , 1997 .

[63]  L. Johnson,et al.  Energy Transfer Between Rare‐Earth Ions , 1966 .

[64]  M. Hon,et al.  Phase formation and thermal stability of calcium lanthanum sulfide powder , 1994 .

[65]  Kenneth T. V. Grattan,et al.  Fiber‐optic high‐temperature sensor based on the fluorescence lifetime of alexandrite , 1992 .

[66]  Kelly L. Nash,et al.  Spectroscopic and magnetic susceptibility analyses of the 7FJ and 5D4 energy levels of Tb3+(4f8) in TbAlO3 , 2008 .

[67]  Kenneth T. V. Grattan,et al.  Ytterbium-based fluorescence decay time fiber optic temperature sensor systems , 1998 .

[68]  C. Falcony,et al.  Characterization of luminescent praseodymium-doped ZrO2 coatings deposited by ultrasonic spray pyrolysis technique , 2007 .

[69]  William F. Krupke,et al.  1.047-pm Yb:Srs(PO&,F Energy Storage Optical Amplifier , 1995 .

[70]  E. Novikov Error estimation in the phase plane method of multi-exponential decay analysis , 1998 .

[71]  John C. Wright,et al.  Multiphonon and energy transfer relaxation in charge compensated crystals , 1979 .

[72]  Zengmei Wang,et al.  Optical transitions in Ho3+ doped La3Ga5SiO14 crystals , 2007 .

[73]  M. Cates,et al.  Advances in High Temperature Phosphor Thermometry for Aerospace Applications , 2003 .

[74]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[75]  J. McCallum,et al.  Synthesis of Ti: Sapphire by Ion Implantation , 1999 .

[76]  C. Struck,et al.  Eu+35D Resonance Quenching to the Charge‐Transfer States in Y2O2S, La2O2S, and LaOCl , 1970 .

[77]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[78]  G. Gillies,et al.  Remote thermometry with thermographic phosphors: Instrumentation and applications , 1997 .

[79]  William F. Krupke,et al.  1.047-/spl mu/m Yb:Sr/sub 5/(PO/sub 4/)/sub 3/F energy storage optical amplifier , 1995 .

[80]  John G. Jones,et al.  Smart tribological coatings with wear sensing capability , 2008 .

[81]  Setsuhisa Tanabe,et al.  Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in codoped glasses by red-laser pumping , 1995 .

[82]  Andrew L. Heyes,et al.  Industrial Sensor TBCs: Studies on Temperature Detection and Durability , 2005 .

[83]  Jonas W. Ringsberg,et al.  Rolling contact fatigue of rails—finite element modelling of residual stresses, strains and crack initiation , 2000 .

[84]  Kenneth T. V. Grattan,et al.  Ruby-based decay-time thermometry: effect of probe size on extended measurement range (77–800 K) , 1997 .

[85]  N. Magnani,et al.  Optical spectroscopy and crystal-field analysis of YAl3(BO3)4single crystals doped with dysprosium , 2003 .

[86]  T. Luxbacher,et al.  Temperature dependence of luminescence decay from the state of Sm3+ in Cs2NaSmxY1 − xCl6 and Cs2NaSmxEuyY1 − x − yCl6 , 1997 .

[87]  V. C. Fernicola,et al.  Time- and frequency-domain analyses of fluorescence lifetime for temperature sensing , 2006 .

[88]  David B. Williams,et al.  Dopant distributions in rare-earth-doped alumina , 2005 .

[89]  S. K. Lyo Critical Concentration for Single-Ion-Single-Ion Energy Transfer in Ruby , 1971 .

[90]  Effective Ionic Radii in Oxides and Fluorides* , 1968 .

[91]  D. Clarke,et al.  Terbium as an alternative for luminescence sensing of temperature of thermal barrier coating materials , 2007 .

[92]  Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines , 1995 .

[93]  D. Clarke,et al.  Effect of long term, high temperature aging on luminescence from Eu-doped YSZ thermal barrier coatings , 2006 .

[94]  D. G. Walker,et al.  Transient measurements using thermographic phosphors. , 2007, ISA transactions.

[95]  E. Belokoneva,et al.  Crystal Growth and Structural Refinements of the Y2SiO5, Y2Si2O7 and LaBSiO5 Single Crystals , 1999 .

[96]  G. Blasse,et al.  On the Luminescence of Sm3+, Gd3+, and Dy3+ in Yttrium Aluminium Borate , 1981 .

[97]  G. Blasse Rare earth spectroscopy in relation to materials science , 1992 .

[98]  Victor M. Orera,et al.  Spectroscopic characterization of Er3+ in stabilized zirconia single crystals , 1991 .

[99]  Marcus Aldén,et al.  Two-dimensional surface temperature measurements of burning materials , 2002 .

[100]  T. Gadfort,et al.  High temperature surface measurements using lifetime imaging of thermographic phosphors: bonding tests , 2001, ICIASF 2001 Record, 19th International Congress on Instrumentation in Aerospace Simulation Facilities (Cat. No.01CH37215).

[101]  L. G. Uitert,et al.  Quenching Interactions between Rare‐Earth Ions , 1962 .

[102]  David R. Clarke,et al.  Oxide materials with low thermal conductivity , 2007 .

[103]  Narottam P. Bansal,et al.  Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics , 2005 .

[104]  A. Bugos,et al.  Emission properties of europium-doped lanthanum and lutetium orthophosphate crystals for use in high temperature sensor applications , 1989, Proceedings. IEEE Energy and Information Technologies in the Southeast'.

[105]  Zhiyi Zhang,et al.  Erbium/ytterbium fluorescence based fiber optic temperature sensor system , 2000 .

[106]  W. Jadwisienczak,et al.  Thermal quenching of luminescence and isovalent trap model for rare‐earth‐ion‐doped AlN , 2007 .

[107]  B. T. Meggitt,et al.  Characterization of erbium-doped intrinsic optical fiber sensor probes at high temperatures , 1998 .

[108]  Jogender Singh,et al.  Erosion‐Indicating Thermal Barrier Coatings Using Luminescent Sublayers , 2006 .

[109]  D. Clarke,et al.  Stress anisotropy of the R-line luminescence lifetime in single crystal Cr-doped sapphire (ruby) , 2007 .

[110]  D. Clarke,et al.  Luminescence thermometry for environmental barrier coating materials , 2008 .

[111]  Lee C. Bradley,et al.  A Temperature‐Sensitive Phosphor Used to Measure Surface Temperatures in Aerodynamics , 1953 .

[112]  C. Fitzpatrick,et al.  Development of temperature sensitive glassware for monitoring temperatures in harsh industrial environments , 2005 .

[113]  Kenneth T. V. Grattan,et al.  A novel signal processing scheme for a fluorescence based fiber‐optic temperature sensor , 1991 .

[114]  Andrew L. Heyes,et al.  Oxygen quenching of phosphorescence from thermographic phosphors , 2003 .

[115]  M. Belmonte,et al.  Advanced Ceramic Materials for High Temperature Applications , 2006 .

[116]  David R. Clarke,et al.  Non-contact sensing of TBC/BC interface temperature in a thermal gradient , 2006 .

[117]  H. Seyfried,et al.  Laser-induced Phosphorescence for Surface Thermometry in the Afterburner of an Aircraft Engine , 2007 .

[118]  D W Goodwin,et al.  Spectra and Energy Levels of Rare Earth Ions in Crystals , 1969 .

[119]  Anmol S. Nijjar,et al.  Crystal field analysis ofPm3+(4f4)andSm3+(4f5)and lattice location studies ofNd147andPm147inw−AlN , 2006 .

[120]  Kenneth T. V. Grattan,et al.  Prony’s method for exponential lifetime estimations in fluorescence‐based thermometers , 1996 .

[121]  R. Reisfeld,et al.  Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them , 1972 .

[122]  G. Gillies,et al.  Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles: measurements from 7 to 77°C , 2003 .

[123]  M. Birnbaum,et al.  Lifetimes of the 4F3/2 state in Nd : YVO4 , 1979 .

[124]  B. Atakan,et al.  Phosphorescence properties of sol–gel derived ruby measured as functions of temperature and Cr3+ content , 2008 .

[125]  Yongrong Shen,et al.  EFFECT OF PRESSURE AND TEMPERATURE ON 4F-4F LUMINESCENCE PROPERTIES OF SM2+ IONS IN MFCL CRYSTALS (M=BA, SR, AND CA) , 1998 .

[126]  C. B. Thomas,et al.  Modeling the fluorescent lifetime of Y2O3:Eu , 1998 .

[127]  J. Halloran,et al.  Dopant Distribution in Nominally Yttrium-Doped Sapphire , 1986 .

[128]  J. Yang,et al.  Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits , 2006 .

[129]  Yun Liu,et al.  Influence of calcining temperature on photoluminescence and thermal quenching in europium-doped Y2SiO5 using the MOD process , 2002 .

[130]  G. Blasse Influence of local charge compensation on site occupation and luminescence of apatites , 1975 .

[131]  M. Yu,et al.  Sol–gel deposition and luminescent properties of oxyapatite Ca2(Y,Gd)8(SiO4)6O2 phosphor films doped with rare earth and lead ions , 2002 .

[132]  B. Lal,et al.  Fluorescence and lifetime studies of Ho3+: CaF2 , 1978 .

[133]  Kenneth T. V. Grattan,et al.  Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation , 1998 .

[134]  K. Tobin,et al.  High-temperature phosphor thermometry of rotating turbine blades , 1990 .

[135]  W. Assmus,et al.  The luminescence of holmium doped cubic yttria-stabilized zirconia , 2000 .

[136]  M. Grinberg,et al.  Luminescence kinetics and emission lifetime distribution of Cr3+-doped aluminosilicate glass , 2001 .

[137]  C. Struck,et al.  Quantum‐mechanical treatment of Eu+3 4f→4f and 4f?charge‐transfer‐state transitions in Y2O2S and La2O2S , 1976 .

[138]  D. Clarke,et al.  Effects of dopants and excitation wavelength on the temperature sensing of Ln3+-doped 7YSZ , 2008 .

[139]  D. Clarke,et al.  Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26 , 2009 .

[140]  Kenneth T. V. Grattan,et al.  Fiber Optic Fluorescence Thermometry , 1994 .

[141]  H. Seifert,et al.  Yttrium Silicate Coatings on Chemical Vapor Deposition-SiC-Precoated C/C-SiC: Thermodynamic Assessment and High-Temperature Investigation , 2005 .

[142]  David R. Clarke,et al.  Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings , 2005 .

[143]  Edwin Yue-Bun Pun,et al.  Optical absorption and photoluminescence in Sm3+- and Eu3+-doped rare-earth borate glasses , 2005 .

[144]  D. Kay,et al.  Determination of the standard free energies of formation of Ce2O2S and Y2O2S at high temperatures , 1983 .

[145]  D. Clarke,et al.  Noncontact Methods for Measuring Thermal Barrier Coating Temperatures , 2006 .

[146]  S. K. Brown,et al.  Phosphor-based thermometry of rotating surfaces. , 1987, Applied optics.

[147]  G. Blasse,et al.  Lifetime measurements in Eu 2+-doped host lattices , 1997 .

[148]  A. Speghini,et al.  Cross-Relaxation and Upconversion Processes in Pr3+ Singly Doped and Pr3+/Yb3+ Codoped Nanocrystalline Gd3Ga5O12: The Sensitizer/Activator Relationship , 2008 .

[149]  Kenneth T. V. Grattan,et al.  Thulium-doped fiber optic decay-time temperature sensors: Characterization of high temperature performance , 2000 .

[150]  Anmol S. Nijjar,et al.  Crystal field analysis of Pm3+ (4f4) and Sm3+ (4f5) and lattice location studies of 147Nd and 147Pm in w-AlN , 2006 .

[151]  Lothar H. Brixner,et al.  Fluorescence lifetime and quantum efficiency for 5d → 4f transitions in Eu2+ doped chloride and fluoride crystals , 1980 .

[152]  Xueyuan Chen,et al.  Energy levels, fluorescence lifetime and Judd–Ofelt parameters of Eu3+ in Gd2O3 nanocrystals , 2007 .

[153]  N. Padture,et al.  Low‐Thermal‐Conductivity Rare‐Earth Zirconates for Potential Thermal‐Barrier‐Coating Applications , 2004 .

[154]  R. I. Merino,et al.  Optical and electron paramagnetic resonance characterization of Dy3+ in YSZ single crystals , 1997 .

[155]  O Tillement,et al.  Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. , 2004, Journal of colloid and interface science.

[156]  H. C. Seat,et al.  Dedicated temperature sensing with c-axis oriented single-crystal ruby (Cr/sup 3+/:Al/sub 2/O/sub 3/) fibers: temperature and strain dependences of R-line fluorescence , 2004, IEEE Transactions on Instrumentation and Measurement.

[157]  Peizhi Yang,et al.  Concentration quenching in Yb:YAG , 2002 .

[158]  Lee,et al.  Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS , 2022 .

[159]  D. G. Walker Heat flux determination from measured heating rates using thermographic phosphors , 2005 .

[160]  Kenneth T. V. Grattan,et al.  Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximately 1000 °C , 1997 .

[161]  R. I. Merino,et al.  Site resolution spectroscopy of Nd3+ in Yttrium Stabilized Zirconia , 1993 .

[162]  P. Dorenbos The 4fn↔4fn − 15d transitions of the trivalent lanthanides in halogenides and chalcogenides , 2000 .

[163]  G. Dieke,et al.  Ion-Pair Resonance Mechanism of Energy Transfer in Rare Earth Crystal Fluorescence , 1961 .

[164]  H. Masuhara,et al.  Analysis of transient emission curves by a convolved autoregressive model. , 1991, Applied optics.