IRIM at TRECVID2009: High Level Feature Extraction

The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes our participation to the TRECVID 2009 High Level Features detection task. We evaluated a large number of different descriptors (on TRECVID 2008 data) and tried different fusion strategies, in particular hierarchical fusion and genetic fusion. The best IRIM run has a Mean Inferred Average Precision of 0.1220, which is significantly above TRECVID 2009 HLF detection task median performance. We found that fusion of the classification scores from different classifier types improves the performance and that even with a quite low individual performance, audio descriptors can help.

[1]  Stéphane Ayache,et al.  LIG and LIRIS at TRECVID 2008: High Level Feature Extraction and Collaborative Annotation , 2008, TRECVID.

[2]  Koen E. A. van de Sande,et al.  A comparison of color features for visual concept classification , 2008, CIVR '08.

[3]  Paul Over,et al.  High-level feature detection from video in TRECVid: a 5-year retrospective of achievements , 2009 .

[4]  Alberto Albiol Audio to the Rescue , 2004 .

[5]  Ingvar Claesson,et al.  Face Detection using Local SMQT Features and Split up Snow Classifier , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[6]  Chong-Wah Ngo,et al.  Columbia University/VIREO-CityU/IRIT TRECVID2008 High-Level Feature Extraction and Interactive Video Search , 2008, TRECVID.

[7]  Georges Quénot,et al.  LIG at TRECVID 2009: Hierarchical Fusion for High Level Feature Extraction , 2009 .

[8]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[9]  Trevor Darrell,et al.  Hidden Conditional Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Lionel Koenig,et al.  IRIT @ TRECVid HLF 2009 - Audio to the Rescue , 2009, TRECVID.

[11]  Hervé Glotin,et al.  LSIS TREC VIDEO 2009 High Level Feature Retrieval using Compact Profile Entropy Descriptors , 2009 .

[12]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[13]  Shu-Yuan Chen,et al.  Image classification using color, texture and regions , 2003, Image Vis. Comput..

[14]  Matthieu Cord,et al.  Rushes summarization by IRIM consortium: redundancy removal and multi-feature fusion , 2008, TVS '08.

[15]  C. V. Jawahar,et al.  Oxford TRECVID 2008 - Notebook paper , 2008 .

[16]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[17]  Hervé Glotin,et al.  Learning optimal visual features from Web sampling in online image retrieval , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Hung-Khoon Tan,et al.  Beyond Semantic Search: What You Observe May Not Be What You Think , 2008, TRECVID.

[19]  Hervé Glotin,et al.  Efficient image concept indexing by harmonic & arithmetic profiles entropy , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[20]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[21]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[22]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[23]  Hervé Glotin,et al.  LSIS TREC VIDEO 2008 High Level Feature Shot Segmentation using Compact Profile Entropy and Affinity Propagation Clustering , 2008, TRECVID.

[24]  Andrew Zisserman,et al.  Oxford TRECVid 2007 \u2013 Notebook paper , 2007, TRECVID.

[25]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[26]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[27]  Christian Petersohn Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.

[28]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[29]  Stéphane Ayache,et al.  Using Topic Concepts for Semantic Video Shots Classification , 2006, CIVR.

[30]  Stéphane Ayache,et al.  Image and Video Indexing Using Networks of Operators , 2007, EURASIP J. Image Video Process..

[31]  S. Ayache LIF TREC VIDEO 2009 High Level Feature Extraction Using Genetic Fusion , 2009, TRECVID.

[32]  Benoit Huet,et al.  Classifier Fusion: Combination Methods For Semantic Indexing in Video Content , 2006, ICANN.

[33]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[34]  Jenny Benois-Pineau,et al.  A multi-resolution particle filter tracking in a multi-camera environment , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[35]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Bernard. Merialdo,et al.  Eurecom at TRECVID 2009 High-Level Feature Extraction , 2009, TRECVID.

[37]  Cordelia Schmid,et al.  INRIA-LEAR'S Video Copy Detection System , 2008, TRECVID.

[38]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[39]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[40]  Jorma Laaksonen,et al.  PicSOM Experiments in TRECVID 2018 , 2015, TRECVID.