Leveraging Metabolomics to Assess the Next Generation of Temozolomide-based Therapeutic Approaches for Glioblastomas

Glioblastoma multiforme (GBM) is the most common adult primary tumor of the central nervous system. The current standard of care for glioblastoma patients involves a combination of surgery, radiotherapy and chemotherapy with the alkylating agent temozolomide. Several mechanisms underlying the inherent and acquired temozolomide resistance have been identified and contribute to treatment failure. Early identification of temozolomide-resistant GBM patients and improvement of the therapeutic strategies available to treat this malignancy are of uttermost importance. This review initially looks at the molecular pathways underlying GBM formation and development with a particular emphasis placed on recent therapeutic advances made in the field. Our focus will next be directed toward the molecular mechanisms modulating temozolomide resistance in GBM patients and the strategies envisioned to circumvent this resistance. Finally, we highlight the diagnostic and prognostic value of metabolomics in cancers and assess its potential usefulness in improving the current standard of care for GBM patients.

[1]  A. Merlo,et al.  PI3Kinase signaling in glioblastoma , 2010, Journal of Neuro-Oncology.

[2]  Sagar Agarwal,et al.  Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain , 2011, Expert Reviews in Molecular Medicine.

[3]  M. Weller,et al.  O6‐methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells , 2006, Journal of neurochemistry.

[4]  Francesco Tomasello,et al.  miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors , 2009, Journal of Neuro-Oncology.

[5]  Yunqing Li,et al.  microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. , 2008, Cancer research.

[6]  I. Yang,et al.  Molecular characteristics and pathways of Avastin for the treatment of glioblastoma multiforme. , 2012, Neurosurgery clinics of North America.

[7]  E. Newlands,et al.  O6-benzylguanine enhances the sensitivity of a glioma xenograft with low O6-alkylguanine-DNA alkyltransferase activity to temozolomide and BCNU. , 1996, British Journal of Cancer.

[8]  J. Herman,et al.  Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  Cancer Care Ontario Practice Guidelines Initiative , 2003 .

[10]  K. Camphausen,et al.  In vitro and In vivo Radiosensitization of Glioblastoma Cells by the Poly (ADP-Ribose) Polymerase Inhibitor E7016 , 2009, Clinical Cancer Research.

[11]  D. Louis,et al.  MSH6 inactivation and emergent temozolomide resistance in human glioblastomas. , 2008, Clinical neurosurgery.

[12]  E. Eigenbrodt,et al.  The tumor metabolome. , 2003, Anticancer research.

[13]  M. Čuperlović-Culf NMR metabolomics in cancer research , 2012 .

[14]  Mitchel S. Berger,et al.  Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. , 2011, Neuro-oncology.

[15]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[16]  Martin L. Smith,et al.  Manipulation of Base Excision Repair to Sensitize Ovarian Cancer Cells to Alkylating Agent Temozolomide , 2007, Clinical Cancer Research.

[17]  Manfred Westphal,et al.  A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. , 2003, Neuro-oncology.

[18]  H. Takeshima,et al.  Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. , 2009, Anticancer research.

[19]  E. Chiocca,et al.  Potential role of miRNAs and their inhibitors in glioma treatment , 2010, Expert review of anticancer therapy.

[20]  T. Bathen,et al.  MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status , 2007, Breast Cancer Research and Treatment.

[21]  Miroslava Cuperlovic-Culf,et al.  1H NMR Metabolomics Analysis of Glioblastoma Subtypes , 2012, The Journal of Biological Chemistry.

[22]  Koji Yoshimoto,et al.  Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. , 2005, The New England journal of medicine.

[23]  Eric C. Holland,et al.  Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma , 2010, Nature Reviews Cancer.

[24]  P. Wen,et al.  A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. , 2011, Neuro-oncology.

[25]  D. Monleón,et al.  Comparative metabolic profiling of paediatric ependymoma, medulloblastoma and pilocytic astrocytoma. , 2010, International journal of molecular medicine.

[26]  Julian L. Griffin,et al.  Metabolic profiles of cancer cells , 2004, Nature Reviews Cancer.

[27]  Luca Regli,et al.  Clinical Trial Substantiates the Predictive Value of O-6-Methylguanine-DNA Methyltransferase Promoter Methylation in Glioblastoma Patients Treated with Temozolomide , 2004, Clinical Cancer Research.

[28]  J K Smith,et al.  Correlation of myo-inositol levels and grading of cerebral astrocytomas. , 2000, AJNR. American journal of neuroradiology.

[29]  J. Lindon,et al.  Metabonomics: a platform for studying drug toxicity and gene function , 2002, Nature Reviews Drug Discovery.

[30]  M. Stevens,et al.  NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. , 1994, Biochemistry.

[31]  Rebecca A Betensky,et al.  Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. , 2007, Clinical cancer research : an official journal of the American Association for Cancer Research.

[32]  S. Q. Xie,et al.  Proteomic Analysis of Mitotic RNA Polymerase II Reveals Novel Interactors and Association With Proteins Dysfunctional in Disease* , 2011, Molecular & Cellular Proteomics.

[33]  J. Silber,et al.  The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[34]  T. Buclin,et al.  Pharmacokinetics of temozolomide in association with fotemustine in malignant melanoma and malignant glioma patients: comparison of oral, intravenous, and hepatic intra-arterial administration , 1998, Cancer Chemotherapy and Pharmacology.

[35]  P. Gutin,et al.  NovoTTF-100A versus physician's choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. , 2012, European journal of cancer.

[36]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[37]  C. Beier,et al.  Chemoresistance of glioblastoma cancer stem cells - much more complex than expected , 2011, Molecular Cancer.

[38]  J. Jiricny,et al.  Involvement of the mismatch repair system in temozolomide-induced apoptosis. , 1998, Molecular pharmacology.

[39]  P. Kehrli,et al.  Toward improved grading of malignancy in oligodendrogliomas using metabolomics , 2008, Magnetic resonance in medicine.

[40]  S. Madhusudan,et al.  Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. , 2010, Cancer treatment reviews.

[41]  Tanja Fehm,et al.  Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer , 2013, Molecular oncology.

[42]  J. E. Adams Brain Tumors: An Encyclopedic Approach , 1996 .

[43]  W. Saltzman,et al.  Pharmacokinetics of the Carmustine Implant , 2002, Clinical pharmacokinetics.

[44]  Tao Zhang,et al.  Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. , 2013, Journal of proteome research.

[45]  Xiao-hong Wang,et al.  Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. , 2011, Cancer research.

[46]  S. Gerson Clinical relevance of MGMT in the treatment of cancer. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  D. Reardon,et al.  Molecularly targeted therapy for malignant glioma , 2007, Cancer.

[48]  F. Davis,et al.  Current epidemiological trends and surveillance issues in brain tumors , 2001, Expert review of anticancer therapy.

[49]  J. Costello,et al.  Epigenetic mechanisms in glioblastoma multiforme. , 2009, Seminars in cancer biology.

[50]  G Friedmann,et al.  Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. , 1992, Radiology.

[51]  E. Chiocca,et al.  21 – Glioblastoma and malignant astrocytoma , 2012 .

[52]  R. L. Kamman,et al.  Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography , 1995, Neuroradiology.

[53]  L. Cantley,et al.  Metabolomics of Human Cerebrospinal Fluid Identifies Signatures of Malignant Glioma* , 2012, Molecular & Cellular Proteomics.

[54]  R. DePinho,et al.  Malignant glioma: genetics and biology of a grave matter. , 2001, Genes & development.

[55]  C. James,et al.  Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  N. Laperriere,et al.  Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[57]  D. Wishart Applications of Metabolomics in Drug Discovery and Development , 2008, Drugs in R&D.

[58]  F. Yamasaki,et al.  Detection and differentiation of lactate and lipids by single-voxel proton MR spectroscopy , 2005, Neurosurgical Review.

[59]  A. Bergenheim,et al.  Metabolomic patterns in glioblastoma and changes during radiotherapy: a clinical microdialysis study. , 2010, Journal of proteome research.

[60]  P. Morin,et al.  miRNAs as important drivers of glioblastomas: a no-brainer? , 2012, Cancer biomarkers : section A of Disease markers.

[61]  E. Wong,et al.  NovoTTF-100A: a new treatment modality for recurrent glioblastoma , 2012, Expert review of neurotherapeutics.

[62]  M. Tisdale Antitumor imidazotetrazines--XV. Role of guanine O6 alkylation in the mechanism of cytotoxicity of imidazotetrazinones. , 1987, Biochemical pharmacology.

[63]  M. Lopes,et al.  Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. , 2007, Genes & development.

[64]  D. Reardon,et al.  Targeting multiple kinases in glioblastoma multiforme. , 2009, Expert opinion on investigational drugs.

[65]  I. Germano,et al.  Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. , 2003, Journal of neurosurgery.

[66]  M.-H. Lee,et al.  Roles of p53, Myc and HIF-1 in Regulating Glycolysis — the Seventh Hallmark of Cancer , 2008, Cellular and Molecular Life Sciences.

[67]  A. Darzi,et al.  1H HR-MAS NMR spectroscopy of tumor-induced local metabolic "field-effects" enables colorectal cancer staging and prognostication. , 2013, Journal of proteome research.

[68]  Alan Hutson,et al.  Detection of epithelial ovarian cancer using 1H‐NMR‐based metabonomics , 2005, International journal of cancer.

[69]  G. Reifenberger,et al.  Genetic Alterations and Aberrant Expression of Genes Related to the Phosphatidyl‐lnositol‐3′‐Kinase/Protein Kinase B (Akt) Signal Transduction Pathway in Glioblastomas , 2003, Brain pathology.

[70]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[71]  Mi Hyun Kim,et al.  Combined therapy of temozolomide and ZD6474 (vandetanib) effectively reduces glioblastoma tumor volume through anti-angiogenic and anti-proliferative mechanisms. , 2012, Molecular medicine reports.

[72]  W P Dillon,et al.  Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. , 2001, AJNR. American journal of neuroradiology.

[73]  M. Stevens,et al.  Antitumor imidazotetrazines. 32. Synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. , 1995, Journal of medicinal chemistry.

[74]  P. Kleihues,et al.  Genetic pathways to primary and secondary glioblastoma. , 2007, The American journal of pathology.

[75]  Brian D. Ross,et al.  Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases , 1999 .

[76]  P. Canoll,et al.  MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. , 2013, Human molecular genetics.

[77]  J. Rey,et al.  Early genetic changes involved in low-grade astrocytic tumor development. , 2006, Current molecular medicine.

[78]  Eli R. Zunder,et al.  Dual blockade of lipid and cyclin-dependent kinases induces synthetic lethality in malignant glioma , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Schiff,et al.  XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. , 2010, IDrugs : the investigational drugs journal.

[80]  Michael Platten,et al.  Pathway inhibition: emerging molecular targets for treating glioblastoma. , 2011, Neuro-oncology.

[81]  H. Lanfermann,et al.  Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions , 2002, Neuroradiology.

[82]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[83]  W. Mason,et al.  Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[84]  Yunqing Li,et al.  MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. , 2009, Cancer research.

[85]  P. Wen,et al.  Current clinical development of PI3K pathway inhibitors in glioblastoma. , 2012, Neuro-oncology.

[86]  C. Laughton,et al.  Certain Imidazotetrazines Escape O6-Methylguanine-DNA Methyltransferase and Mismatch Repair , 2011, Oncology.

[87]  P. Canoll,et al.  Convection-enhanced delivery in the treatment of malignant glioma , 2006, Neurological research.

[88]  Martin Dugas,et al.  High-Resolution Genomic Copy Number Profiling of Glioblastoma Multiforme by Single Nucleotide Polymorphism DNA Microarray , 2009, Molecular Cancer Research.

[89]  M. Arbushites,et al.  Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: A pilot study , 2012, Molecular oncology.

[90]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[91]  M. Sawyer,et al.  Urinary metabolomic signature of esophageal cancer and Barrett’s esophagus , 2012, World Journal of Surgical Oncology.

[92]  N. Serkova,et al.  Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. , 2006, Pharmacogenomics.

[93]  T. Mak,et al.  Regulation of cancer cell metabolism , 2011, Nature Reviews Cancer.

[94]  G. Fuller,et al.  Modulating Antiangiogenic Resistance by Inhibiting the Signal Transducer and Activator of Transcription 3 Pathway in Glioblastoma , 2012, Oncotarget.

[95]  L. Chin,et al.  Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. , 2006, Cancer research.

[96]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[97]  F. Balis,et al.  Plasma and Cerebrospinal Fluid Pharmacokinetics of Intravenous Temozolomide in Non-human Primates , 2003, Journal of Neuro-Oncology.

[98]  P. Statkevich,et al.  Disposition and pharmacokinetics of temozolomide in rat , 2004, Xenobiotica; the fate of foreign compounds in biological systems.

[99]  Andreas von Deimling,et al.  Characterization of the amplicon on chromosomal segment 4q12 in glioblastoma multiforme. , 2007, Neuro-oncology.