Carroll black holes

Despite the absence of a lightcone structure, some solutions of Carroll gravity show black hole-like behaviour. We define Carroll black holes as solutions of Carroll gravity that exhibit Carroll thermal properties and have a Carroll extremal surface, notions introduced in our work. The latter is a Carroll analogue of a Lorentzian extremal surface. As examples, we discuss the Carroll versions of Schwarzschild, Reissner-Nordstr\"om, and BTZ black holes and black hole solutions of generic 1+1 dimensional Carroll dilaton gravity, including Carroll JT and Carroll Witten black holes.

[1]  Ricardo Troncoso,et al.  BMS3 (Carrollian) field theories from a bound in the coupling of current-current deformations of CFT2 , 2023, Journal of High Energy Physics.

[2]  J. Figueroa-O’Farrill,et al.  Carroll/fracton particles and their correspondence , 2023, Journal of High Energy Physics.

[3]  Xiaoyang Huang A Chern-Simons theory for dipole symmetry , 2023, 2305.02492.

[4]  A. Bagchi,et al.  AdS Witten diagrams to Carrollian correlators , 2023, Journal of High Energy Physics.

[5]  A. Shukla,et al.  Carrollian Origins of Bjorken Flow. , 2023, Physical review letters.

[6]  Romain Ruzziconi,et al.  Bridging Carrollian and celestial holography , 2022, Physical Review D.

[7]  Jean-Marc L'evy-Leblond On the unexpected fate of scientific ideas: An archeology of the Carroll group , 2022, SciPost Physics Proceedings.

[8]  A. Banerjee,et al.  Magic fermions: Carroll and flat bands , 2022, Journal of High Energy Physics.

[9]  M. Henneaux,et al.  Magnetic Carrollian gravity from the Carroll algebra , 2022, Journal of High Energy Physics.

[10]  Gerben Oling,et al.  Conformal Carroll scalars with boosts , 2022, SciPost Physics.

[11]  J. Figueroa-O’Farrill,et al.  The gauging procedure and carrollian gravity , 2022, Journal of High Energy Physics.

[12]  Jos'e Figueroa-O'Farrill,et al.  A non-lorentzian primer , 2022, SciPost Physics Lecture Notes.

[13]  A. Banerjee,et al.  Boosting to BMS , 2022, Journal of High Energy Physics.

[14]  Utku Zorba,et al.  Carrollian and non-relativistic Jackiw–Teitelboim supergravity , 2022, The European Physical Journal C.

[15]  Alfredo P'erez Asymptotic symmetries in Carrollian theories of gravity with a negative cosmological constant , 2022, Journal of High Energy Physics.

[16]  S. Dutta,et al.  Scattering Amplitudes: Celestial and Carrollian. , 2022, Physical review letters.

[17]  Romain Ruzziconi,et al.  Carrollian Perspective on Celestial Holography. , 2022, Physical review letters.

[18]  Dennis Hansen,et al.  Carroll Expansion of General Relativity , 2021, SciPost Physics.

[19]  J. Figueroa-O’Farrill,et al.  Carrollian and celestial spaces at infinity , 2021, Journal of High Energy Physics.

[20]  J. Hartong,et al.  Fractons, dipole symmetries and curved spacetime , 2021, SciPost Physics.

[21]  Alfredo P'erez Asymptotic symmetries in Carrollian theories of gravity , 2021, Journal of High Energy Physics.

[22]  S. Vandoren,et al.  Carroll Symmetry, Dark Energy and Inflation , 2021, Frontiers in Physics.

[23]  M. Henneaux,et al.  Carroll contractions of Lorentz-invariant theories , 2021, Journal of High Energy Physics.

[24]  Romain Ruzziconi,et al.  Generalized dilaton gravity in 2d , 2021, SciPost Physics.

[25]  R. Sobreiro,et al.  Carroll limit of four-dimensional gravity theories in the first order formalism , 2021, Classical and Quantum Gravity.

[26]  Romain Ruzziconi,et al.  Conservation and integrability in lower-dimensional gravity , 2020, Journal of High Energy Physics.

[27]  J. Gomis,et al.  Non-relativistic and Carrollian limits of Jackiw-Teitelboim gravity , 2020, Journal of High Energy Physics.

[28]  D. Grumiller,et al.  Limits of JT gravity , 2020, Journal of High Energy Physics.

[29]  M. M. Sheikh-Jabbari,et al.  Symmetries at null boundaries: two and three dimensional gravity cases , 2020, Journal of High Energy Physics.

[30]  J. Maldacena,et al.  Replica wormholes and the entropy of Hawking radiation , 2019, Journal of High Energy Physics.

[31]  J. Maldacena,et al.  The Page curve of Hawking radiation from semiclassical geometry , 2019, Journal of High Energy Physics.

[32]  M. M. Sheikh-Jabbari,et al.  Spacetime Structure near Generic Horizons and Soft Hair. , 2019, Physical review letters.

[33]  H. Afshar Warped Schwarzian theory , 2019, Journal of High Energy Physics.

[34]  Ahmed Almheiri,et al.  The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole , 2019, Journal of High Energy Physics.

[35]  Geoffrey Penington Entanglement wedge reconstruction and the information paradox , 2019, Journal of High Energy Physics.

[36]  J. Figueroa-O’Farrill,et al.  Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes , 2019, Journal of High Energy Physics.

[37]  Charles Marteau,et al.  Carrollian physics at the black hole horizon , 2019, Classical and Quantum Gravity.

[38]  G. Gibbons The Ashtekar-Hansen universal structure at spatial infinity is weakly pseudo-Carrollian , 2019, 1902.09170.

[39]  Kevin Morand Embedding Galilean and Carrollian geometries. I. Gravitational waves , 2018, 1811.12681.

[40]  D. Vassilevich,et al.  Boundary theories for dilaton supergravity in 2D , 2018, Journal of High Energy Physics.

[41]  J. Figueroa-O’Farrill,et al.  Spatially isotropic homogeneous spacetimes , 2018, Journal of High Energy Physics.

[42]  R. Nandkishore,et al.  Fractons , 2018, Annual Review of Condensed Matter Physics.

[43]  Ricardo Troncoso,et al.  Integrable systems with BMS3 Poisson structure and the dynamics of locally flat spacetimes , 2017, 1711.02646.

[44]  Dmitri,et al.  Menagerie of AdS2 boundary conditions , 2017, Journal of High Energy Physics.

[45]  Wei Song,et al.  Entanglement entropy in flat holography , 2017, Journal of High Energy Physics.

[46]  D. Grumiller,et al.  Most general flat space boundary conditions in three-dimensional Einstein gravity , 2017, 1704.07419.

[47]  D. Grumiller,et al.  Three-dimensional spin-3 theories based on general kinematical algebras , 2016, 1612.02277.

[48]  Ricardo Troncoso,et al.  Soft hairy horizons in three spacetime dimensions , 2016, 1611.09783.

[49]  A. Bagchi,et al.  Flat holography: aspects of the dual field theory , 2016, 1609.06203.

[50]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[51]  Ricardo Troncoso,et al.  Asymptotically locally flat spacetimes and dynamical nonspherically-symmetric black holes in three dimensions , 2015, 1512.05410.

[52]  D. Bleeken,et al.  Newton–Cartan, Galileo–Maxwell and Kaluza–Klein , 2015, 1512.03799.

[53]  J. Hartong Holographic reconstruction of 3D flat space-time , 2015, 1511.01387.

[54]  D. Grumiller,et al.  Stress tensor correlators in three dimensional gravity , 2015, 1507.05620.

[55]  J. Hartong Gauging the Carroll algebra and ultra-relativistic gravity , 2015, 1505.05011.

[56]  X. Bekaert,et al.  Connections and dynamical trajectories in generalised Newton-Cartan gravity. II. An ambient perspective , 2015, Journal of Mathematical Physics.

[57]  D. Grumiller,et al.  Entanglement entropy in Galilean conformal field theories and flat holography. , 2014, Physical review letters.

[58]  Netta Engelhardt,et al.  Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime , 2014, 1408.3203.

[59]  G. Gibbons,et al.  Conformal Carroll groups and BMS symmetry , 2014, 1402.5894.

[60]  R. Emparan,et al.  Large-D gravity and low-D strings. , 2013, Physical review letters.

[61]  J. Simón,et al.  Holography of 3D flat cosmological horizons. , 2012, Physical review letters.

[62]  G. Barnich Entropy of three-dimensional asymptotically flat cosmological solutions , 2012, 1208.4371.

[63]  S. Detournay,et al.  Flat-space chiral gravity. , 2012, Physical review letters.

[64]  S. Sachdev Holographic metals and the fractionalized fermi liquid. , 2010, Physical review letters.

[65]  F. Ardalan,et al.  Central charge for 2D gravity on AdS2 and AdS2/CFT1 correspondence , 2008, 0805.1861.

[66]  Thomas Hartman,et al.  Central Charge for AdS(2) Quantum Gravity , 2008, 0803.3621.

[67]  R. McNees,et al.  Thermodynamics of black holes in two (and higher) dimensions , 2007, hep-th/0703230.

[68]  T. Takayanagi,et al.  Flux backgrounds in 2D string theory , 2003, hep-th/0312208.

[69]  J. Maldacena,et al.  A New Hat For The c=1 Matrix Model , 2003, hep-th/0307195.

[70]  W. Kummer,et al.  The Classical Solutions of the Dimensionally Reduced Gravitational Chern-Simons Theory , 2003, hep-th/0306036.

[71]  R. Jackiw,et al.  Dimensionally reduced gravitational Chern-Simons term and its kink , 2003, hep-th/0305117.

[72]  D. Vassilevich,et al.  Dilaton gravity in two-dimensions , 2002, hep-th/0204253.

[73]  D. Klemm,et al.  The Asymptotic Dynamics of two-dimensional (anti-)de Sitter Gravity , 2002, hep-th/0202073.

[74]  J. R. David String Theory and Black Holes , 1999, hep-th/9911003.

[75]  K. Izawa On Nonlinear Gauge Theory from a Deformation Theory Perspective , 1999, hep-th/9910133.

[76]  K. Schwarzschild “Golden Oldie”: On the Gravitational Field of a Mass Point According to Einstein's Theory , 1999, physics/9905030.

[77]  J. Maldacena,et al.  Anti-de Sitter fragmentation , 1998, hep-th/9909069.

[78]  T. Strobl,et al.  POISSON STRUCTURE INDUCED (TOPOLOGICAL) FIELD THEORIES , 1994, hep-th/9405110.

[79]  N. Ikeda Two-dimensional gravity and nonlinear gauge theory , 1993, hep-th/9312059.

[80]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[81]  Zanelli,et al.  Geometry of the 2+1 black hole. , 1993, Physical review. D, Particles and fields.

[82]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[83]  Harvey,et al.  Evanescent black holes. , 1991, Physical review. D, Particles and fields.

[84]  E. Rabinovici,et al.  Some global aspects of string compactifications , 1991 .

[85]  Anirvan M. Sengupta,et al.  Classical solutions of 2-dimensional string theory , 1991 .

[86]  Trugenberger,et al.  Gauge theory of two-dimensional quantum gravity. , 1989, Physical review letters.

[87]  D. Wyler,et al.  Gauge theory of topological gravity in 1+1 dimensions , 1989 .

[88]  P. Hájícek,et al.  Spherically symmetric systems of fields and black holes. I. Definition and properties of apparent horizon , 1984 .

[89]  C. Teitelboim Gravitation and hamiltonian structure in two spacetime dimensions , 1983 .

[90]  C. Teitelboim,et al.  Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry , 1977 .

[91]  W. Unruh Notes on black-hole evaporation , 1976 .

[92]  B. Berger,et al.  Hamiltonian formulation of spherically symmetric gravitational fields. , 1972 .

[93]  N. Gupta On an analogue of the Galilei group , 1966 .

[94]  F. Tangherlini Schwarzschild field inn dimensions and the dimensionality of space problem , 1963 .

[95]  M. M. Sheikh-Jabbari,et al.  Black Hole Physics: From Collapse to Evaporation , 2022, Graduate Texts in Physics.

[96]  Ricardo Troncoso,et al.  Mapping relativistic to ultra/non-relativistic conformal symmetries in 2D and finite √ T ¯ T deformations , 2021 .

[97]  R. Gupta,et al.  Ja n 20 09 AdS 3 / CFT 2 to AdS 2 / CFT 1 , 2009 .

[98]  A. Strominger AdS2 quantum gravity and string theory , 1998, hep-th/9809027.

[99]  J. Lévy-leblond,et al.  Une nouvelle limite non-relativiste du groupe de Poincaré , 1965 .