Development and characterization of chemically stabilized ionic liquid membranes-Part I: Nanoporous ceramic supports

[1]  Jason E. Bara,et al.  Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform , 2010 .

[2]  G. Romanos,et al.  Grafting of imidazolium based ionic liquid on the pore surface of nanoporous materials--study of physicochemical and thermodynamic properties. , 2010, The journal of physical chemistry. B.

[3]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[4]  A. P. de los Ríos,et al.  Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability , 2009 .

[5]  T. Melin,et al.  Ionic liquid imbibition of ceramic nanofiltration membranes , 2009 .

[6]  L. Neves,et al.  Separation of biohydrogen by supported ionic liquid membranes , 2009 .

[7]  E. Favvas,et al.  Methods of evaluating pore morphology in hybrid organic–inorganic porous materials , 2009 .

[8]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[9]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[10]  Jung Min Lee,et al.  Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas , 2009 .

[11]  Thomas Melin,et al.  Liquid membranes for gas/vapor separations , 2008 .

[12]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[13]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[14]  Hideto Matsuyama,et al.  CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane , 2008 .

[15]  E. Favvas,et al.  Investigating the evolution of N2 transport mechanism during the cyclic CVD post-treatment of silica membranes , 2008 .

[16]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension , 2008 .

[17]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 2. Using Activation Energy of Viscosity , 2008 .

[18]  R. Baltus,et al.  Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method , 2007 .

[19]  D. Armstrong,et al.  Ionic liquids in separations. , 2007, Accounts of chemical research.

[20]  F. Hernández‐Fernández,et al.  A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids , 2007 .

[21]  David R. Luebke,et al.  Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125 °C , 2007 .

[22]  Zheng Zhou,et al.  SO2 gas separation using supported ionic liquid membranes. , 2007, The journal of physical chemistry. B.

[23]  Q. Gan,et al.  Supported ionic liquid membranes in nanopore structure for gas separation and transport studies , 2006 .

[24]  Q. Gan,et al.  An Experimental Study of Gas Transport and Separation Properties of Ionic Liquids Supported on Nanofiltration Membranes , 2006 .

[25]  Jason E. Bara,et al.  Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids , 2006 .

[26]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[27]  Xiangping Zhang,et al.  Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids , 2006 .

[28]  Xiangping Zhang,et al.  Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures , 2005 .

[29]  Andrew L. Ferguson,et al.  Diffusivities of Gases in Room-Temperature Ionic Liquids: Data and Correlations Obtained Using a Lag-Time Technique , 2005 .

[30]  A. Yokozeki,et al.  Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4] , 2005 .

[31]  Collin R. Becker,et al.  Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory , 2005 .

[32]  G. Maurer,et al.  Solubility of CO in the ionic liquid [bmim][PF 6] , 2005 .

[33]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[34]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[35]  P. Dyson,et al.  Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. , 2004, Chemical communications.

[36]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[37]  Paul Scovazzo,et al.  Gas Solubilities in Room-Temperature Ionic Liquids , 2004 .

[38]  Joan F. Brennecke,et al.  Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[39]  Joan F. Brennecke,et al.  Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids , 2002 .

[40]  F. Kapteijn,et al.  Methodological and operational aspects of permeation measurements on silicalite-1 membranes , 1998 .

[41]  Wolf R. Vieth,et al.  Diffusion in and Through Polymers: Principles and Applications , 1991 .

[42]  R. Noble,et al.  Diffusion and Solubility Measurements in Room Temperature Ionic Liquids , 2006 .

[43]  Brian J. Briscoe,et al.  Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures , 2000 .

[44]  Richard D. Noble,et al.  Membrane separations technology : principles and applications , 1995 .