Angiotensin-(1-7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling.

[1]  F. Hsu,et al.  The PPARδ agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. , 2013, Free radical biology & medicine.

[2]  M. Teixeira,et al.  ACE2, angiotensin‐(1‐7) and Mas receptor axis in inflammation and fibrosis , 2013, British journal of pharmacology.

[3]  M. Willingham,et al.  Angiotensin‐(1‐7) attenuates metastatic prostate cancer and reduces osteoclastogenesis , 2013, The Prostate.

[4]  Wenwu Zhang,et al.  Angiotensin (1–7) ameliorates angiotensin II-induced inflammation by inhibiting LOX-1 expression , 2012, Inflammation Research.

[5]  T. Jiang,et al.  Suppressing inflammation by inhibiting the NF‐κB pathway contributes to the neuroprotective effect of angiotensin‐(1‐7) in rats with permanent cerebral ischaemia , 2012, British journal of pharmacology.

[6]  J. Lovato,et al.  Reverse translation of phase I biomarker findings links the activity of angiotensin-(1–7) to repression of hypoxia inducible factor-1α in vascular sarcomas , 2012, BMC Cancer.

[7]  M. Robbins,et al.  Radiation-induced cognitive impairment--from bench to bedside. , 2012, Neuro-oncology.

[8]  A. Álvarez-Buylla,et al.  Regional Astrocyte Allocation Regulates CNS Synaptogenesis and Repair , 2012, Science.

[9]  F. Hsu,et al.  Chronic Administration of the Angiotensin-Converting Enzyme Inhibitor, Ramipril, Prevents Fractionated Whole-Brain Irradiation-Induced Perirhinal Cortex-Dependent Cognitive Impairment , 2012, Radiation research.

[10]  Weiling Zhao,et al.  Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells , 2012, PloS one.

[11]  David H Rowitch,et al.  Astrocytes and disease: a neurodevelopmental perspective. , 2012, Genes & development.

[12]  C. Costa-Neto,et al.  Angiotensin‐(1–7) decreases LPS‐induced inflammatory response in macrophages , 2012, Journal of cellular physiology.

[13]  F. Hsu,et al.  PPARδ prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-κB and inhibition of the PKCα/MEK1/2/ERK1/2/AP-1 pathway. , 2012, Free radical biology & medicine.

[14]  O. Lindvall,et al.  Inhibition of Microglial Activation Protects Hippocampal Neurogenesis and Improves Cognitive Deficits in a Transgenic Mouse Model for Alzheimer’s Disease , 2012, Neurodegenerative Diseases.

[15]  E. Tallant,et al.  Angiotensin-(1–7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts , 2012, Peptides.

[16]  Chengluan Xuan,et al.  Angiotensin-(1-7) attenuates the chronotropic response to angiotensin II via stimulation of PTEN in the spontaneously hypertensive rat neurons. , 2012, American journal of physiology. Heart and circulatory physiology.

[17]  P. Gallagher,et al.  Angiotensin-(1-7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1. , 2012, American journal of physiology. Heart and circulatory physiology.

[18]  B. Fernández,et al.  Angiotensin‐(1–7) through Mas receptor up‐regulates neuronal norepinephrine transporter via Akt and Erk1/2‐dependent pathways , 2012, Journal of neurochemistry.

[19]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[20]  Katherine L. Cook,et al.  Angiotensin peptides and lung cancer. , 2011, Current cancer drug targets.

[21]  O. Riesterer,et al.  Human lymphoma cells develop resistance to radiation in the presence of astrocytes in vitro. , 2011, Anticancer research.

[22]  A. Jemal,et al.  Global Cancer Statistics , 2011 .

[23]  Stephen L. Brown,et al.  Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis , 2011, Journal of Neuro-Oncology.

[24]  E. Tallant,et al.  Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors. , 2010, Cancer research.

[25]  L. P. de Sousa,et al.  Anti-Inflammatory Effects of the Activation of the Angiotensin-(1–7) Receptor, Mas, in Experimental Models of Arthritis , 2010, The Journal of Immunology.

[26]  D. Diz,et al.  Renin-angiotensin system blockers and modulation of radiation-induced brain injury. , 2010, Current drug targets.

[27]  F. Dominici,et al.  Angiotensin-(1-7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats. , 2010, American journal of physiology. Heart and circulatory physiology.

[28]  D. Riddle,et al.  Effects of the AT1 Receptor Antagonist L-158,809 on Microglia and Neurogenesis after Fractionated Whole-Brain Irradiation , 2010, Radiation research.

[29]  Stephen L. Brown,et al.  Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus , 2010, Radiation oncology.

[30]  F. Torti,et al.  Phase I and Pharmacokinetic Study of Angiotensin-(1-7), an Endogenous Antiangiogenic Hormone , 2009, Clinical Cancer Research.

[31]  F. Hsu,et al.  The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. , 2009, International Journal of Radiation Oncology, Biology, Physics.

[32]  O. Lindvall,et al.  Brain inflammation and adult neurogenesis: The dual role of microglia , 2009, Neuroscience.

[33]  F. Hsu,et al.  The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. , 2009, International journal of radiation oncology, biology, physics.

[34]  Sanchita Bhattacharya,et al.  Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease , 2009, Radiation research.

[35]  K. Blomgren,et al.  Transient Inflammation in Neurogenic Regions after Irradiation of the Developing Brain , 2009, Radiation research.

[36]  Weiling Zhao,et al.  Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. , 2009, Current medicinal chemistry.

[37]  F. Hsu,et al.  PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. , 2008, Free radical biology & medicine.

[38]  O. Lindvall,et al.  Inflammation Regulates Functional Integration of Neurons Born in Adult Brain , 2008, The Journal of Neuroscience.

[39]  C. Ferrario,et al.  MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. , 2008, American journal of physiology. Cell physiology.

[40]  Christopher M Norris,et al.  Interleukin-1β-dependent Signaling between Astrocytes and Neurons Depends Critically on Astrocytic Calcineurin/NFAT Activity* , 2008, Journal of Biological Chemistry.

[41]  Rakesh R. Patel,et al.  Targeted Therapy for Brain Metastases: Improving the Therapeutic Ratio , 2007, Clinical Cancer Research.

[42]  J. Cline,et al.  Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. , 2007, Cancer research.

[43]  E. Shaw,et al.  Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  I. Han,et al.  Ionizing radiation induces astrocyte gliosis through microglia activation , 2006, Neurobiology of Disease.

[45]  D. Diz,et al.  Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. , 2006, International journal of radiation oncology, biology, physics.

[46]  C. Ferrario,et al.  Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. , 2005, American journal of physiology. Heart and circulatory physiology.

[47]  Andreas Krause,et al.  A standard curve based method for relative real time PCR data processing , 2005, BMC Bioinformatics.

[48]  Hiroki Toda,et al.  Inflammatory Blockade Restores Adult Hippocampal Neurogenesis , 2003, Science.

[49]  D. Voehringer,et al.  The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. , 2003, The Journal of biological chemistry.

[50]  Jacqueline P. Williams,et al.  Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. , 2002, Brain research. Molecular brain research.

[51]  J. Hunter,et al.  Late cognitive and radiographic changes related to radiotherapy: Initial prospective findings , 2002, Neurology.

[52]  F. Gage,et al.  Reduced Hippocampal Neurogenesis in Adult Transgenic Mice with Chronic Astrocytic Production of Interleukin-6 , 2002, The Journal of Neuroscience.

[53]  Y. Guo,et al.  Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. , 2001, Journal of neurochemistry.

[54]  M. O’Banion,et al.  TNFα and IL-1β mediate intercellular adhesion molecule-1 induction via microglia–astrocyte interaction in CNS radiation injury , 1999, Journal of Neuroimmunology.

[55]  M. O’Banion,et al.  TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. , 1999, Journal of neuroimmunology.

[56]  E. Tallant,et al.  Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain , 1997, Glia.

[57]  D. Diz,et al.  Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides. , 1989, The Journal of biological chemistry.

[58]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.