Conformal transformations to achieve unidirectional behavior of light

The method of optical conformal mapping is used to design two isotropic devices through which light travels in a unidirectional manner. The first device is a directional emitter. By setting a line current source in a properly tuned refractive index profile, fields can be radiated in only one direction or its opposite without using any reflector or metallic structure. The second proposal is a dual-functional device. It works not only as a directional emitter for an embedded source but also as a quasi-diode for beams, thus having potential on-chip applications. Functionalities of the two designs are verified by finite- element-based simulations. We further investigate the spatial dependence of the refractive index near singularities, and corresponding optimization is proposed in the interests of experimental consideration. Numerical results show that the one-way property is well preserved after the parameter reduction.

[1]  Huanyang Chen,et al.  Transformation optics that mimics the system outside a Schwarzschild black hole. , 2009, Optics express.

[2]  Giulio Casati,et al.  Asymmetric wave propagation in nonlinear systems. , 2011, Physical review letters.

[3]  Tom H. Anderson,et al.  Ray trajectories for a spinning cosmic string and a manifestation of self-cloaking , 2010, 1007.3113.

[4]  Yeshaiahu Fainman,et al.  Nonreciprocal Light Propagation in a Silicon Photonic Circuit , 2011, Science.

[5]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[6]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[7]  Haiding Sun,et al.  Compact optical waveguide coupler using homogeneous uniaxial medium , 2011 .

[8]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[9]  T. Tyc,et al.  An omnidirectional retroreflector based on the transmutation of dielectric singularities. , 2009, Nature materials.

[10]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2008, Physical review letters.

[11]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[12]  Chen Wang,et al.  On-chip optical diode based on silicon photonic crystal heterojunctions. , 2011, Optics express.

[13]  Zongfu Yu,et al.  Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit” , 2012, Science.

[14]  Zheng Wang,et al.  One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. , 2008, Physical review letters.

[15]  D. Genov,et al.  Mimicking celestial mechanics in metamaterials , 2009 .

[16]  A. Danner Singularity removal in optical instruments without reflections or induced birefringence , 2010 .

[17]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .

[18]  Ulf Leonhardt,et al.  Partial transmutation of singularities in optical instruments , 2011, 1105.0163.

[19]  M. Qiu,et al.  Cylindrical superlens by a coordinate transformation , 2008, 0804.2850.

[20]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[21]  Peter Nordlander,et al.  Unidirectional broadband light emission from supported plasmonic nanowires. , 2011, Nano letters.

[22]  Shiyang Liu,et al.  Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials , 2010 .

[23]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[24]  Fabio Biancalana,et al.  All-optical diode action with quasiperiodic photonic crystals , 2008 .

[25]  M. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[26]  T. Tyc,et al.  Transmutation of singularities in optical instruments , 2008 .

[27]  Martin W. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[28]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[29]  U. Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[30]  D. Smith,et al.  Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. , 2010, Physical review letters.

[31]  Xi Chen,et al.  Electronic analogy of the Goos–Hänchen effect: a review , 2013, 1301.3549.

[32]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[33]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[34]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[35]  Carsten Rockstuhl,et al.  Designing optical elements from isotropic materials by using transformation optics , 2010 .

[36]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[37]  Kan Yao,et al.  Designing feasible optical devices via conformal mapping , 2011 .

[38]  Shah Nawaz Burokur,et al.  Ultradirective antenna via transformation optics , 2009 .

[39]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[40]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[41]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[42]  Chao Li,et al.  Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks , 2009 .

[43]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[44]  T. Cui,et al.  Cylindrical-to-plane-wave conversion via embedded optical transformation , 2008 .

[45]  A. Scherer,et al.  Response to Comment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit” , 2012, Science.

[46]  D. Werner,et al.  Polarization splitter and polarization rotator designs based on transformation optics. , 2008, Optics express.

[47]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.

[48]  Nicolas Bonod,et al.  Ultracompact and unidirectional metallic antennas , 2010 .