L-NNA suppresses cerebrovascular response and evoked potentials during somatosensory stimulation in rats.

We studied the local cerebrovascular response and somatosensory-evoked potentials (SEPs) to stimulation of the sciatic nerve during both short- (< 30 min) and long-term (90-150 min) exposure to topically applied NG-nitro-L-arginine (L-NNA). The pial circulation was visualized through a cranial window in alpha-chloralose-anesthetized rats. The diameter of pial arterioles (25-45 microns) and laser-Doppler flow (LDF) in the hindlimb sensory cortex were simultaneously measured during sciatic nerve stimulation. Short-term (< 30 min) treatment with L-NNA (1 mM) abolished the dilation of pial arterioles induced by acetylcholine, whereas the response to sciatic nerve stimulation was not affected. When applied for > 30 min, L-NNA induced severe vasomotion and attenuated the vascular responses to sciatic nerve stimulation. Long-term exposure to topically (1 mM) or systemically (10 mg/kg i.v.) applied L-NNA also attenuated cortical SEPs to sciatic nerve stimulation. Thus L-NNA-induced inhibition of vascular responses may be secondary to suppression of neuronal activity and an L-arginine metabolite, such as nitric oxide, may be involved in neurotransmission in the cerebral cortex during somatosensory activity.