COLOR–MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS

We extend color-magnitude relations for moderate-luminosity X-ray active galactic nucleus (AGN) hosts and non-AGN galaxies through the galaxy formation epoch (z ≈ 1-4) in the Chandra Deep Field-North and Chandra Deep Field-South (CDF-N and CDF-S, respectively; jointly CDFs) surveys. This study was enabled by the deepest available X-ray data from the 2 Ms CDF surveys as well as complementary ultradeep multiwavelength data in these regions. We utilized analyses of color-magnitude diagrams (CMDs) to assess the role of moderate-luminosity AGNs in galaxy evolution. First, we confirm some previous results and extend them to higher redshifts, finding, for example, that (1) there is no apparent color bimodality (i.e., the lack of an obvious red sequence and blue cloud) for AGN hosts from z ≈ 0to2, but non-AGN galaxy color bimodality exists up to z ≈ 3 and the relative fraction of red-sequence galaxies generally increases as the redshift decreases (consistent with a blue-to-red migration of galaxies), (2) most AGNs reside in massive hosts and the AGN fraction rises strongly toward higher stellar mass, up to z ≈ 2-3, and (3) the colors of both AGN hosts and non-AGN galaxies become redder as the stellar mass increases, up to z ≈ 2-3. Second, we point out that, in order to obtain a complete and reliable picture, it is critical to use mass-matched samples to examine color-magnitude relations of AGN hosts and non-AGN galaxies. We show that for mass-matched samples up to z ≈ 2-3, AGN hosts lie in the same region of the CMD as non-AGN galaxies; i.e., there is no specific clustering of AGN hosts in the CMD around the red sequence, the top of the blue cloud, or the green valley in between. The AGN fraction (≈ 10%) is mostly independent of host-galaxy color, providing an indication of the duty cycle of supermassive black hole growth in typical massive galaxies. These results are in contrast to those obtained with non-mass-matched samples where there is apparent AGN clustering in the CMD and the AGN fraction generally increases as the color becomes redder. We also find, for mass-matched samples, that the star formation rates of AGN hosts are typically a factor of ≈ 2-3 larger than those of non-AGN galaxies at z ≈ 0-1, whereas this difference diminishes at z ≈ 1-3. With mass-selection effects taken into account, we find that almost all of the results obtained in this work can reasonably be explained by two main ingredients, color-mass correlation (i.e., X-ray AGNs preferentially reside in massive galaxies that generally tend to be redder than less-massive galaxies) and passive or secular evolution of galaxies. Our results show that the presence of moderate-luminosity AGN activity does not have a significant effect on the colors of galaxies and thus tightly constrain any effects from moderate-luminosity AGN feedback upon color-magnitude properties over the ≈ 80% of cosmic time during which most of galaxy formation occurred.

[1]  Keith M. Ashman,et al.  Detecting Bimodality in Astronomical Datasets , 1994 .

[2]  D. M. Alexander,et al.  THE LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH: TWO MODES OF STAR FORMATION IN ACTIVE GALACTIC NUCLEUS HOSTS? , 2010, 1002.0071.

[3]  J. Dunlop,et al.  MASS OF GALAXIES AT LOW AND HIGH REDSHIFT , 2003 .

[4]  Martin Elvis,et al.  The Chandra COSMOS Survey , 2006 .

[5]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[6]  M. Rowan-Robinson,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007 .

[7]  D. Schneider,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2011, 1105.5643.

[8]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[9]  E. Feigelson,et al.  INNOVATIONS IN THE ANALYSIS OF CHANDRA-ACIS OBSERVATIONS , 2010, 1003.2397.

[10]  P. Dokkum,et al.  Morphological Evolution and the Ages of Early-Type Galaxies in Clusters , 2001, astro-ph/0101468.

[11]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[12]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[13]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[14]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[15]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[16]  E. Bell,et al.  STELLAR MASS-TO-LIGHT RATIOS FROM GALAXY SPECTRA: HOW ACCURATE CAN THEY BE? , 2009, 0910.1591.

[17]  G. Illingworth,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETECTION OF A RED SEQUENCE OF MASSIVE FIELD GALAXIES AT Z ∼ 2.3 AND ITS EVOLUTION TO Z ∼ 0 1 , 2022 .

[18]  D. Thompson,et al.  PHOTOMETRIC REDSHIFT AND CLASSIFICATION FOR THE XMM–COSMOS SOURCES , 2008, 0809.2098.

[19]  H. Rix,et al.  THE RISE OF MASSIVE RED GALAXIES: THE COLOR–MAGNITUDE AND COLOR–STELLAR MASS DIAGRAMS FOR zphot ≲ 2 FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE , 2008, 0810.3459.

[20]  Heinrich Spiecker,et al.  Conclusions and Summary , 1996 .

[21]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[22]  H. Hildebrandt,et al.  Calibration update of the COMBO-17 CDFS catalogue , 2008, 0809.2066.

[23]  Robert C. Kennicutt,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[24]  J. Newman,et al.  The role of AGN in the colour transformation of galaxies at redshifts z≈ 1 , 2008, 0801.2160.

[25]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[26]  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[27]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[28]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[29]  P. Dokkum,et al.  A JavaScript Passive Evolution Calculator , 2005, astro-ph/0501236.

[30]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[31]  J. Silverman,et al.  Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies Using X-Ray Emission: Results from the Chandra Deep Fields , 2008, 0803.3620.

[32]  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[33]  THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.

[34]  D. M. Alexander,et al.  The Fall of AGN and the Rise of Star-Forming Galaxies: A Close Look at the Chandra Deep Field X-ray Number , 2004 .

[35]  M. Franx,et al.  HOW MASSIVE ARE MASSIVE COMPACT GALAXIES? , 2009, 0909.5182.

[36]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[37]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[38]  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[39]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[40]  J. Newman,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 AEGIS: THE COLOR-MAGNITUDE RELATION FOR X-RAY SELECTED AGN , 2006 .

[41]  M. Franx,et al.  The space density and colors of massive galaxies at 2 < z < 3: the predominance of distant red galaxies , 2006 .

[42]  Carl Heiles,et al.  The bell laboratories H I survey , 1992 .

[43]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[44]  W. Brandt,et al.  Supermassive black-hole growth over cosmic time: Active galaxy demography, physics, and ecology from Chandra surveys , 2010, Proceedings of the National Academy of Sciences.

[45]  A. Mazure,et al.  The VIMOS-VLT deep survey Color bimodality and the mix of galaxy populations up to z ∼ 2 , 2006, astro-ph/0607075.

[46]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[47]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[48]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[49]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[50]  M. Persic,et al.  Galactic star-formation rates gauged by stellar end-products , 2006 .

[51]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[52]  P. P. van der Werf,et al.  The Color-Magnitude Distribution of Field Galaxies to z~3: The Evolution and Modeling of the Blue Sequence , 2007, 0705.3325.

[53]  Michael E. Anderson,et al.  HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs , 2009, 0901.4121.

[54]  The B-band luminosity function of red and blue galaxies up to z = 3.5 , 2004, astro-ph/0412044.

[55]  Garching,et al.  A deep VLA survey at 6 cm in the Lockman Hole , 2002, astro-ph/0211625.

[56]  U. Patras,et al.  Optical colours of AGN in the extended Chandra deep field South: obscured black holes in early type galaxies , 2007, 0708.3294.

[57]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[58]  G. Zamorani,et al.  Black hole growth and starburst activity at z = 0.6–4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN , 2009, 0910.1007.

[59]  Andrea Merloni,et al.  Tracing the cosmological assembly of stars and supermassive black holes in galaxies , 2004 .

[60]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs , 2003, astro-ph/0304392.

[61]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[62]  B. Garilli,et al.  ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, 0810.3653.

[63]  J. Lee,et al.  On the interstellar medium and star formation demographics of galaxies in the local universe , 2009, 0908.1122.

[64]  G. Hasinger,et al.  Luminosity-dependent evolution of soft X-ray selected AGN : New Chandra and XMM-Newton surveys , 2005, astro-ph/0506118.

[65]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[66]  P. Hall,et al.  A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC) , 2009, 0903.3051.

[67]  D. M. Alexander,et al.  The Relationship between Stellar and Black Hole Mass in Submillimeter Galaxies , 2005, astro-ph/0507610.

[68]  Submillimeter Evidence for the Coeval Growth of Massive Black Holes and Galaxy Bulges , 2001, Science.

[69]  W. Brandt,et al.  Rapid growth of black holes in massive star-forming galaxies , 2005, Nature.

[70]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[71]  I. Baldry,et al.  Are galaxies with active galactic nuclei a transition population , 2007, 0710.1497.

[72]  D. M. Alexander,et al.  The Extended Chandra Deep Field-South Survey: Chandra Point-Source Catalogs , 2005, astro-ph/0506607.

[73]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[74]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[75]  K. Schawinski,et al.  OPTICAL SPECTROSCOPY OF X-RAY SOURCES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0810.3917.

[76]  Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas* , 2006, astro-ph/0603180.

[77]  A. Merloni,et al.  A synthesis model for AGN evolution: supermassive black holes growth and feedback modes , 2008, 0805.2499.

[78]  C. Lintott,et al.  GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES , 2010, 1001.3141.

[79]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[80]  I. Smail,et al.  THE CHANDRA DEEP FIELD-SOUTH SURVEY: 4 Ms SOURCE CATALOGS , 2008, 0806.3968.

[81]  Iap Paris,et al.  Resolved stellar mass maps of galaxies. I: method and implications for global mass estimates , 2009, 0904.4252.

[82]  Caltech,et al.  The Hubble Deep Field-North SCUBA Super-map - IV. Characterizing submillimetre galaxies using deep Spitzer imaging , 2006, astro-ph/0605573.

[83]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 <~ z <~ 2.5 , 2004, astro-ph/0409041.

[84]  J. Brinchmann,et al.  The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback , 2005, astro-ph/0506269.

[85]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[86]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[87]  W. N. Brandt,et al.  DEEP EXTRAGALACTIC X-RAY SURVEYS , 2005 .

[88]  C. Papovich,et al.  The Host Galaxies and Black Holes of Typical z~0.5-1.4 AGNs , 2007, 0712.3121.

[89]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[90]  M. Dickinson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters , 1997, astro-ph/9708037.

[91]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[92]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[93]  L. Cowie,et al.  Accepted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj AN INTEGRATED PICTURE OF STAR FORMATION, METALLICITY EVOLUTION, AND GALACTIC STELLAR MASS ASSEMBLY 1 , 2022 .

[94]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[95]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[96]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[97]  S. Ravindranath,et al.  AGN Host Galaxies at z ~ 0.4-1.3: Bulge-dominated and Lacking Merger-AGN Connection , 2005, astro-ph/0507091.

[98]  H. Tananbaum,et al.  The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift , 2007, 0710.2461.

[99]  W. Brandt,et al.  The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Large-Scale Structures , 2007, 0709.3455.

[100]  K. Nandra,et al.  On the X-ray properties of sub-mm-selected galaxies , 2009, 0910.2464.

[101]  C. Conselice,et al.  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 AEGIS: NEW EVIDENCE LINKING ACTIVE GALACTIC NUCLEI TO THE QUENCHING OF STAR FORMATION , 2022 .

[102]  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[103]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[104]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[105]  NOAO,et al.  Spitzer Mid- to Far-Infrared Flux Densities of Distant Galaxies , 2007, 0706.2164.

[106]  L. Kewley,et al.  The Chandra Deep Field-South: Optical Spectroscopy. I. , 2003, astro-ph/0312324.

[107]  D. M. Alexander,et al.  IDENTIFICATIONS AND PHOTOMETRIC REDSHIFTS OF THE 2 Ms CHANDRA DEEP FIELD-SOUTH SOURCES , 2010, 1002.3154.

[108]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[109]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[110]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[111]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[112]  Cambridge,et al.  The effect of radiation pressure on dusty absorbing gas around active galactic nuclei , 2007, 0712.0277.

[113]  David W. Hogg,et al.  The Luminosity Density of Red Galaxies , 2002 .

[114]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[115]  K. Schawinski,et al.  The physical nature of Lyα-emitting galaxies at z = 3.1 , 2006, astro-ph/0603244.