Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos.

Polynomial chaos expansions (PCE) are an attractive technique for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. When tailoring the orthogonal polynomial bases to match the forms of the input uncertainties in a Wiener-Askey scheme, excellent convergence properties can be achieved for general probabilistic analysis problems. Non-intrusive PCE methods allow the use of simulations as black boxes within UQ studies, and involve the calculation of chaos expansion coefficients based on a set of response function evaluations. These methods may be characterized as being either Galerkin projection methods, using sampling or numerical integration, or regression approaches (also known as point collocation or stochastic response surfaces), using linear least squares. Numerical integration methods may be further categorized as either tensor product quadrature or sparse grid Smolyak cubature and as either isotropic or anisotropic. Experience with these approaches is presented for algebraic and PDE-based benchmark test problems, demonstrating the need for accurate, efficient coefficient estimation approaches that sca le for problems with significant numbers of random variables.

[1]  N. Wiener The Homogeneous Chaos , 1938 .

[2]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[5]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[6]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[7]  N. Lind,et al.  Fast probability integration by three-parameter normal tail approximation , 1982 .

[8]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[9]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[10]  Yih‐Tsuen Wu,et al.  New Algorithm for Structural Reliability Estimation , 1987 .

[11]  L. F. Escudero Book reviewMore test examples for nonlinear programming codes: Klaus SCHITTKOWSKI Volume 282 in: Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 1987, iv + 261 pages, DM49.00 , 1988 .

[12]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[13]  Rüdiger Rackwitz,et al.  Two basic problems in reliability-based structural optimization , 1997, Math. Methods Oper. Res..

[14]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[15]  R. Sues,et al.  Reliability-Based Multi-Discipli nary Optimization for Aerospace Systems , 2001 .

[16]  Y.-T. Wu,et al.  Safety-Factor Based Approach for Probability-Based Design Optimization , 2001 .

[17]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  R. Walters Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .

[20]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[21]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[22]  J. E. Renaud,et al.  Investigation of reliability method formulations in DAKOTA/UQ , 2004 .

[23]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[24]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[25]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[26]  George E. Karniadakis,et al.  Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..

[27]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[28]  M. Eldred,et al.  Second-Order Reliability Formulations in DAKOTA/UQ , 2006 .

[29]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[30]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[31]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..