暂无分享,去创建一个
[1] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[2] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[3] L. Deng,et al. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.
[4] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[5] Patrick Kofod Mogensen,et al. Optim: A mathematical optimization package for Julia , 2018, J. Open Source Softw..
[6] Velimir V. Vesselinov,et al. Large‐scale inverse model analyses employing fast randomized data reduction , 2017 .
[7] P. Kitanidis,et al. Principal Component Geostatistical Approach for large-dimensional inverse problems , 2014, Water resources research.
[8] George A. Zyvoloski,et al. FEHMN 1.0: Finite element heat and mass transfer code , 1991 .
[9] S. Kullback,et al. Information Theory and Statistics , 1959 .
[10] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[11] LinLin Shen,et al. Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).
[12] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[13] Satish Karra,et al. PFLOTRAN User Manual A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes , 2015 .
[14] Carl Doersch,et al. Tutorial on Variational Autoencoders , 2016, ArXiv.
[15] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[16] A Tikhonov,et al. Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .
[17] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[18] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[19] Peter K. Kitanidis,et al. Large‐scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) , 2014 .
[20] Daniel M. Tartakovsky,et al. Linear functional minimization for inverse modeling , 2015 .
[21] Julia Deniz Yuret. Knet : beginning deep learning with 100 lines of , 2016 .
[22] E. G. Vomvoris,et al. A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .