Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials

[1]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[2]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[3]  Wojciech Pietraszkiewicz,et al.  Theory and numerical analysis of shells undergoing large elastic strains , 1992 .

[4]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[5]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[6]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[7]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[8]  Y. Başar,et al.  Finite-element analysis of hyperelastic thin shells with large strains , 1996 .

[9]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[10]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[11]  S. Reese,et al.  A new locking-free brick element technique for large deformation problems in elasticity ☆ , 2000 .

[12]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[13]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[14]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[15]  Boštjan Brank,et al.  Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation , 2002 .

[16]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[17]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[18]  G. S. Sekhon,et al.  Large Deformation -I , 2003 .

[19]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[20]  M. Sacks,et al.  Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. , 2003, Journal of biomechanical engineering.

[21]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[22]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[23]  Tom Lyche,et al.  T-spline Simplication and Local Renement , 2004 .

[24]  R. M. Natal Jorge,et al.  An enhanced strain 3D element for large deformation elastoplastic thin-shell applications , 2004 .

[25]  E. Ramm,et al.  Chapter 3 Models and Finite Elements for Thin-walled Structures , 2004 .

[26]  M. Sacks,et al.  Simulated bioprosthetic heart valve deformation under quasi-static loading. , 2005, Journal of biomechanical engineering.

[27]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[28]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[29]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[30]  Jia Lu,et al.  Dynamic Simulation of Bioprosthetic Heart Valves Using a Stress Resultant Shell Model , 2008, Annals of Biomedical Engineering.

[31]  Roland Wüchner,et al.  Upgrading membranes to shells-The CEG rotation free shell element and its application in structural analysis , 2007 .

[32]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[33]  Sung-Kie Youn,et al.  T‐spline finite element method for the analysis of shell structures , 2009 .

[34]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[35]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[36]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[37]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[38]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[39]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[40]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[41]  Robert Schmidt,et al.  Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis , 2010, Comput. Vis. Sci..

[42]  Stefanie Reese,et al.  A reduced integration solid‐shell finite element based on the EAS and the ANS concept—Large deformation problems , 2011 .

[43]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[44]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[45]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[46]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[47]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[48]  Josef Kiendl,et al.  Isogeometric Analysis and Shape Optimal Design of Shell Structures , 2011 .

[49]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[50]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[51]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[52]  Yuri Bazilevs,et al.  A computational procedure for prebending of wind turbine blades , 2012 .

[53]  Cv Clemens Verhoosel,et al.  An isogeometric solid‐like shell element for nonlinear analysis , 2013 .

[54]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[55]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[56]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[57]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[58]  B. Simeon,et al.  Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors , 2013 .

[59]  A. Combescure,et al.  Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method , 2013 .

[60]  J. F. Caseiro,et al.  On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements , 2014 .

[61]  Michael S Sacks,et al.  An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. , 2014, Journal of biomechanics.

[62]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[63]  Jia Lu,et al.  Dynamic cloth simulation by isogeometric analysis , 2014 .

[64]  P. Pimenta,et al.  Meshless implementation of the geometrically exact Kirchhoff–Love shell theory , 2014 .

[65]  Hung Nguyen-Xuan,et al.  Explicit finite deformation analysis of isogeometric membranes , 2014 .

[66]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[67]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[68]  Sven Klinkel,et al.  Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework , 2014 .

[69]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[70]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[71]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[72]  Alessandro Reali,et al.  Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures , 2015 .

[73]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[74]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .