A New Discretization for mth-Laplace Equations with Arbitrary Polynomial Degrees
暂无分享,去创建一个
[1] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[2] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[3] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[4] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[5] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[6] A. Ženíšek. Interpolation polynomials on the triangle , 1970 .
[7] Rolf Stenberg,et al. A posteriori error estimates for the Morley plate bending element , 2007, Numerische Mathematik.
[8] Mira Schedensack,et al. A New Generalization of the P 1 Non-Conforming FEM to Higher Polynomial Degrees , 2015, Comput. Methods Appl. Math..
[9] W. Rudin. Principles of mathematical analysis , 1964 .
[10] Ming Wang,et al. Minimal finite element spaces for 2m-th-order partial differential equations in Rn , 2012, Math. Comput..
[11] Mira Schedensack,et al. Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition , 2017 .
[12] Dietmar Gallistl,et al. Stable splitting of polyharmonic operators by generalized Stokes systems , 2017, Math. Comput..
[13] Andreas Veeser,et al. Approximating Gradients with Continuous Piecewise Polynomial Functions , 2014, Found. Comput. Math..
[14] Jun Hu,et al. A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes , 2014, Comput. Math. Appl..
[15] D. Arnold,et al. A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .
[16] John R. King,et al. The isolation oxidation of silicon: the reaction-controlled case , 1989 .
[17] Carsten Carstensen,et al. Axioms of adaptivity for separate marking , 2016, 1606.02165.
[18] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[19] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[20] S. C. Brenner,et al. C 0 Interior Penalty Methods , 2011 .
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] John W. Barrett,et al. Finite element approximation of a sixth order nonlinear degenerate parabolic equation , 2004, Numerische Mathematik.
[23] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[24] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[25] T. Hughes,et al. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .
[26] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] Thirupathi Gudi,et al. An interior penalty method for a sixth-order elliptic equation , 2011 .
[29] L. Morley. The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .
[30] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[31] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[32] Necas Jindrich. Les Méthodes directes en théorie des équations elliptiques , 2017 .
[33] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.