Commuting quantum circuits with few outputs are unlikely to be classically simulatable

We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. First, we show that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is exponentially small. Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the argument for the above evidence to Clifford circuits in a similar setting and provide evidence that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable. These results reveal subtle differences between quantum and classical computation.

[1]  Sean Clark,et al.  Generalized clifford groups and simulation of associated quantum circuits , 2008, Quantum Inf. Comput..

[2]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[3]  Yasuhiro Takahashi,et al.  Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits , 2011, 2013 IEEE Conference on Computational Complexity.

[4]  Yong Zhang,et al.  Bounds on the Power of Constant-Depth Quantum Circuits , 2005, FCT.

[5]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[6]  Takeshi Yamazaki,et al.  Hardness of classically simulating quantum circuits with unbounded Toffoli and fan-out gates , 2014, Quantum Inf. Comput..

[7]  Maarten Van Den Nes Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .

[8]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[10]  Robert Spalek,et al.  Quantum Fan-out is Powerful , 2005, Theory Comput..

[11]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[12]  Dan J. Shepherd,et al.  Binary Matroids and Quantum Probability Distributions , 2010, ArXiv.

[13]  Robert Spalek,et al.  Quantum Circuits with Unbounded Fan-out , 2002, STACS.

[14]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[15]  Maarten Van den Nest,et al.  Simulating quantum computers with probabilistic methods , 2009, Quantum Inf. Comput..

[16]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..

[17]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[18]  Keisuke Fujii,et al.  Classical simulation of DQC1$_2$ or DQC2$_1$ implies collapse of the polynomial hierarchy , 2014, 1409.6777.

[19]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Greg Kuperberg,et al.  How Hard Is It to Approximate the Jones Polynomial? , 2009, Theory Comput..

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[23]  Maarten Van den Nest,et al.  Commuting quantum circuits: efficient classical simulations versus hardness results , 2013, Quantum Inf. Comput..

[24]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..