What insects can tell us about the origins of consciousness

How, why, and when consciousness evolved remain hotly debated topics. Addressing these issues requires considering the distribution of consciousness across the animal phylogenetic tree. Here we propose that at least one invertebrate clade, the insects, has a capacity for the most basic aspect of consciousness: subjective experience. In vertebrates the capacity for subjective experience is supported by integrated structures in the midbrain that create a neural simulation of the state of the mobile animal in space. This integrated and egocentric representation of the world from the animal’s perspective is sufficient for subjective experience. Structures in the insect brain perform analogous functions. Therefore, we argue the insect brain also supports a capacity for subjective experience. In both vertebrates and insects this form of behavioral control system evolved as an efficient solution to basic problems of sensory reafference and true navigation. The brain structures that support subjective experience in vertebrates and insects are very different from each other, but in both cases they are basal to each clade. Hence we propose the origins of subjective experience can be traced to the Cambrian.

[1]  Uwe Homberg,et al.  Evolution of the central complex in the arthropod brain with respect to the visual system. , 2008, Arthropod structure & development.

[2]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[3]  S. Scott,et al.  Detecting Residual Cognitive Function in Persistent Vegetative State , 2002, Neurocase.

[4]  A. Horridge What the honeybee sees: a review of the recognition system of Apis mellifera , 2005 .

[5]  G. Tononi An information integration theory of consciousness , 2004, BMC Neuroscience.

[6]  J. A. Stacey,et al.  Selective attention in the honeybee optic lobes precedes behavioral choices , 2014, Proceedings of the National Academy of Sciences.

[7]  Robert M. McPeek,et al.  Deficits in saccade target selection after inactivation of superior colliculus , 2004, Nature Neuroscience.

[8]  Steven Laureys,et al.  Consciousness in humans and non-human animals: recent advances and future directions , 2013, Front. Psychol..

[9]  P. Redgrave,et al.  The basal ganglia: a vertebrate solution to the selection problem? , 1999, Neuroscience.

[10]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[11]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[12]  B. Merker Consciousness without a cerebral cortex: A challenge for neuroscience and medicine , 2007, Behavioral and Brain Sciences.

[13]  Antti Revonsuo,et al.  Consciousness, dreams and virtual realities , 1995 .

[14]  N. Strausfeld,et al.  Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.

[15]  S. Snyder,et al.  Separate Signals for Target Selection and Movement Specification in the Superior Colliculus , 2022 .

[16]  J. Zeil,et al.  Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi , 2013, Proceedings of the Royal Society B: Biological Sciences.

[17]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[18]  G. Edelman Naturalizing consciousness: A theoretical framework , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Peter Redgrave,et al.  A computational model of action selection in the basal ganglia. I. A new functional anatomy , 2001, Biological Cybernetics.

[20]  J. Prinz The Conscious Brain: How Attention Engenders Experience , 2012 .

[21]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[22]  R. Dubuc,et al.  A mesencephalic relay for visual inputs to reticulospinal neurones in lampreys , 1996, Brain Research.

[23]  S. Grillner,et al.  Evolutionary Conservation of the Basal Ganglia as a Common Vertebrate Mechanism for Action Selection , 2011, Current Biology.

[24]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[25]  B. V. Updyke,et al.  Corticotectal projections in the cat: Anterograde transport studies of twenty‐five cortical areas , 1992, The Journal of comparative neurology.

[26]  C Giovanni Galizia,et al.  Olfactory coding in the insect brain: data and conjectures , 2014, The European journal of neuroscience.

[27]  W T Newsome,et al.  Separate signals for target selection and movement specification in the superior colliculus. , 1999, Science.

[28]  Steven W. Flavell,et al.  Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit , 2015, Cell.

[29]  B. Swinderen The remote roots of consciousness in fruit-fly selective attention? , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  B. Merker The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution , 2005, Consciousness and Cognition.

[31]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[32]  M. Giurfa Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain , 2003, Current Opinion in Neurobiology.

[33]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[34]  M. Collett How Navigational Guidance Systems Are Combined in a Desert Ant , 2012, Current Biology.

[35]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[36]  Xiaoya Ma,et al.  Complex brain and optic lobes in an early Cambrian arthropod , 2012, Nature.

[37]  T. S. Collett,et al.  View-based navigation in Hymenoptera: multiple strategies of landmark guidance in the approach to a feeder , 1997, Journal of Comparative Physiology A.

[38]  C. Ricci,et al.  A Cladistic Analysis of Pseudocoelomate (Aschelminth) Morphology , 1996 .

[39]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[40]  T. Nagel Mortal Questions: What is it like to be a bat? , 2012 .

[41]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[42]  H. Scherberger,et al.  The collicular code of saccade direction depends on the roll orientation of the head relative to gravity , 1998, Experimental Brain Research.

[43]  P. Redgrave,et al.  A New Framework for Cortico-Striatal Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action Interface , 2015, PLoS biology.

[44]  Andrew Parker In The Blink Of An Eye: How Vision Sparked The Big Bang Of Evolution , 2004 .

[45]  A. Morin Levels of consciousness and self-awareness: A comparison and integration of various neurocognitive views , 2006, Consciousness and Cognition.

[46]  J. Hohwy The Search for Neural Correlates of Consciousness , 2007 .

[47]  T. Feinberg,et al.  The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago , 2013, Front. Psychol..

[48]  T. S. Collett,et al.  Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly , 1980, Journal of comparative physiology.

[49]  Christopher D. Carello,et al.  Target selection and the superior colliculus: goals, choices and hypotheses , 2004, Vision Research.

[50]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[51]  Paul C. Knox,et al.  The effect of afferent signals from extraocular muscles on visual responses of cells in the optic tectum of the pigeon , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  R. Oades,et al.  The development of food search behavior by rats: the effects of hippocampal damage and haloperidol. , 1978, Behavioral biology.

[53]  Kevin N. Gurney,et al.  Decision-making and action selection in insects: inspiration from vertebrate-based theories , 2015, Front. Behav. Neurosci..

[54]  Sarah J. Bourlat,et al.  The evolution of the Ecdysozoa , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Andrew B. Barron,et al.  Current progress in understanding the functions of the insect central complex , 2015 .

[56]  M. Mintun,et al.  In Vivo Imaging of Human Limbic Responses to Nitrous Oxide Inhalation , 1996, Anesthesia and analgesia.

[57]  J. Hohwy,et al.  Variability, convergence, and dimensions of consciousness , 2015 .

[58]  D. van der Kooy,et al.  Mutations that prevent associative learning in C. elegans. , 1997, Behavioral neuroscience.

[59]  R. Huerta,et al.  A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules , 2013, The Journal of Neuroscience.

[60]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[61]  E. Thompson,et al.  Specifying the self for cognitive neuroscience , 2011, Trends in Cognitive Sciences.

[62]  S. Grillner,et al.  The evolutionary origin of the vertebrate basal ganglia and its role in action selection , 2013, The Journal of physiology.

[63]  Alexandre Zénon,et al.  Attention deficits without cortical neuronal deficits , 2012, Nature.

[64]  C. Koch,et al.  Consciousness: here, there and everywhere? , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  Simon Conway Morris,et al.  Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals. , 1998 .

[66]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[67]  Ramón Huerta,et al.  Learning Classification in the Olfactory System of Insects , 2004, Neural Computation.

[68]  J. Hailman Wonderful Life: The Burgess Shale and the Nature of History, Stephen Jay Gould. W. W. Norton, New York (1989), 347, Price $19.95 (U.S.A.), $27.95 (Canada) , 1991 .

[69]  H. Duffau,et al.  Disrupting posterior cingulate connectivity disconnects consciousness from the external environment , 2014, Neuropsychologia.

[70]  U. Norrsell,et al.  Behavioural repertory of cats without cerebral cortex from infancy , 1976, Experimental Brain Research.

[71]  M. de Bono,et al.  Neuronal substrates of complex behaviors in C. elegans. , 2005, Annual review of neuroscience.

[72]  S. Morris,et al.  Head and backbone of the Early Cambrian vertebrate Haikouichthys , 2003, Nature.

[73]  C. Rankin,et al.  A new group-training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in Caenorhabditis elegans. , 2002, Learning & memory.

[74]  T Masino Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry. , 1992, Brain, behavior and evolution.

[75]  T. S. Collett,et al.  Learnt sensori-motor mappings in honeybees: interpolation and its possible relevance to navigation , 1995, Journal of Comparative Physiology A.

[76]  D. Sparks Neural cartography: sensory and motor maps in the superior colliculus. , 1988, Brain, behavior and evolution.

[77]  Jaak Panksepp,et al.  The affective brain and core consciousness: How does neural activity generate emotional feelings? , 2008 .

[78]  Magnus Oskarsson,et al.  Box Jellyfish Use Terrestrial Visual Cues for Navigation , 2011, Current Biology.

[79]  Matthew Collett,et al.  The learning and maintenance of local vectors in desert ant navigation , 2009, Journal of Experimental Biology.

[80]  M. Heisenberg,et al.  Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila , 2003, The Journal of Neuroscience.

[81]  Judith E. Hall,et al.  The Thalamus and Brainstem Act As Key Hubs in Alterations of Human Brain Network Connectivity Induced by Mild Propofol Sedation , 2013, The Journal of Neuroscience.

[82]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[83]  Evan L Ardiel,et al.  An elegant mind: learning and memory in Caenorhabditis elegans. , 2010, Learning & memory.

[84]  G. Tononi,et al.  Consciousness and Anesthesia , 2008, Science.

[85]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[86]  Justin S. Feinstein,et al.  Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices , 2012, PloS one.

[87]  Joseph Bastian,et al.  Vision and electroreception: Integration of sensory information in the optic tectum of the weakly electric fishApteronotus albifrons , 1982, Journal of comparative physiology.

[88]  Eliana M. Klier,et al.  The superior colliculus encodes gaze commands in retinal coordinates , 2001, Nature Neuroscience.

[89]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[90]  N. Ulanovsky,et al.  What the bat's voice tells the bat's brain , 2008, Proceedings of the National Academy of Sciences.

[91]  R. Ritzmann,et al.  Neural activity in the central complex of the cockroach brain is linked to turning behaviors , 2013, Journal of Experimental Biology.

[92]  U. Homberg,et al.  Widespread Sensitivity to Looming Stimuli and Small Moving Objects in the Central Complex of an Insect Brain , 2013, The Journal of Neuroscience.

[93]  T S Collett,et al.  Novel landmark-guided routes in ants , 2007, Journal of Experimental Biology.

[94]  Hiroki R. Hayama,et al.  Returning from Oblivion: Imaging the Neural Core of Consciousness , 2012, The Journal of Neuroscience.

[95]  A. Damasio,et al.  The nature of feelings: evolutionary and neurobiological origins , 2013, Nature Reviews Neuroscience.

[96]  Kevin N. Gurney,et al.  The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions , 2007, Neural Computation.

[97]  N. Block On a confusion about a function of consciousness , 1995, Behavioral and Brain Sciences.

[98]  Uwe Homberg,et al.  Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. , 2015, Journal of neurophysiology.

[99]  B. Merker The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control , 2013, Front. Psychol..

[100]  P. Skorupski,et al.  Animal Cognition: An Insect's Sense of Time? , 2006, Current Biology.

[101]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[102]  T. Stanford,et al.  Subcortical loops through the basal ganglia , 2005, Trends in Neurosciences.

[103]  T. Collett,et al.  How hoverflies compute interception courses , 1978, Journal of comparative physiology.

[104]  N. Schiff Recovery of consciousness after brain injury: a mesocircuit hypothesis , 2010, Trends in Neurosciences.

[105]  D. van der Kooy,et al.  Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  A. Damasio,et al.  Consciousness and the brainstem , 2001, Cognition.

[107]  G. Mashour,et al.  Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia , 2013, Proceedings of the National Academy of Sciences.

[108]  F. Libersat,et al.  Wasp voodoo rituals, venom-cocktails, and the zombification of cockroach hosts. , 2014, Integrative and comparative biology.

[109]  J M Groh,et al.  Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus. , 1996, Journal of neurophysiology.

[110]  A. Opstal,et al.  Influence of eye position on activity in monkey superior colliculus. , 1995, Journal of neurophysiology.

[111]  M. Giurfa,et al.  Conceptual learning by miniature brains , 2013, Proceedings of the Royal Society B: Biological Sciences.

[112]  L. Avery,et al.  Starvation-induced collective behavior in C. elegans , 2015, Scientific Reports.

[113]  Michael A. Trestman The Cambrian Explosion and the Origins of Embodied Cognition , 2013 .

[114]  Dan-Eric Nilsson,et al.  Visual control of steering in the box jellyfish Tripedalia cystophora , 2011, Journal of Experimental Biology.

[115]  B. Baars Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. , 2005, Progress in brain research.

[116]  Peter T Weir,et al.  Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. , 2014, Journal of neurophysiology.

[117]  Anthony G Hudetz,et al.  General Anesthesia and Human Brain Connectivity , 2012, Brain Connect..

[118]  I. Pepperberg The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots , 2000 .

[119]  David B. Edelman,et al.  Animal consciousness: a synthetic approach , 2009, Trends in Neurosciences.

[120]  M. Heisenberg,et al.  Attracting the attention of a fly , 2011, Proceedings of the National Academy of Sciences.

[121]  H. Oelschläger,et al.  Neuroanatomy of Magnetoreception: The Superior Colliculus Involved in Magnetic Orientation in a Mammal , 2001, Science.

[122]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[123]  K. Lüersen,et al.  Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans , 2014, Journal of Experimental Biology.

[124]  A. Damasio,et al.  Persistence of feelings and sentience after bilateral damage of the insula. , 2013, Cerebral cortex.

[125]  Liang Liang,et al.  GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons , 2013, Neuron.

[126]  N. Block Perceptual consciousness overflows cognitive access , 2011, Trends in Cognitive Sciences.

[127]  Jenny Kien,et al.  New Models for Motor Control , 1989, Neural Computation.

[128]  B. Webb Neural mechanisms for prediction: do insects have forward models? , 2004, Trends in Neurosciences.

[129]  J. Okada,et al.  Characterization of Locomotor-Related Spike Activity in Protocerebrum of Freely Walking Cricket , 2013, Zoological science.

[130]  Sten Grillner,et al.  Evolution of the basal ganglia: Dual‐output pathways conserved throughout vertebrate phylogeny , 2012, The Journal of comparative neurology.

[131]  Rüdiger Wehner,et al.  Life as a cataglyphologist--and beyond. , 2013, Annual review of entomology.

[132]  Réjean Dubuc,et al.  Electrophysiological and neuropharmacological study of tectoreticular pathways in lampreys , 1998, Brain Research.

[133]  M. Kingsford,et al.  The ecology of box jellyfishes (Cubozoa) , 2014 .

[134]  N. Hunkin,et al.  Bilateral temporal lobe pathology with sparing of medial temporal lobe structures: Lesion profile and pattern of memory disorder , 1994, Neuropsychologia.

[135]  F. Dyer The biology of the dance language. , 2002, Annual review of entomology.

[136]  M. Giurfa The amazing mini-brain: lessons from a honey bee , 2003 .

[137]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[138]  Roy E Ritzmann,et al.  Encoding wide-field motion and direction in the central complex of the cockroach Blaberus discoidalis , 2014, Journal of Experimental Biology.

[139]  Hong Zhu,et al.  Circadian timed episodic-like memory – a bee knows what to do when, and also where , 2007, Journal of Experimental Biology.

[140]  L. Swanson Cerebral hemisphere regulation of motivated behavior 1 1 Published on the World Wide Web on 2 November 2000. , 2000, Brain Research.

[141]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.

[142]  G. Tononi Consciousness as Integrated Information: a Provisional Manifesto , 2008, The Biological Bulletin.

[143]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.