Non-Markovianity hinders Quantum Darwinism

We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

[1]  Ruggero Vasile,et al.  Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps , 2011, 1109.0242.

[2]  Robin Blume-Kohout,et al.  A Simple Example of “Quantum Darwinism”: Redundant Information Storage in Many-Spin Environments , 2004, quant-ph/0408147.

[3]  R. Rubin,et al.  MOMENTUM AUTOCORRELATION FUNCTIONS AND ENERGY TRANSPORT IN HARMONIC CRYSTALS CONTAINING ISOTOPIC DEFECTS , 1963 .

[4]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[5]  R. Zambrini,et al.  Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model , 2015, 1504.02105.

[6]  Fernando G S L Brandão,et al.  Generic emergence of classical features in quantum Darwinism , 2013, Nature Communications.

[7]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[8]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[9]  R. Vasile,et al.  On the spectral origin of non-Markovianity: an exact finite model , 2013, 1311.2923.

[10]  J. Ankerhold,et al.  Optimal control of open quantum systems: cooperative effects of driving and dissipation. , 2010, Physical review letters.

[11]  Ruggero Vasile,et al.  Spectral origin of non-Markovian open-system dynamics: A finite harmonic model without approximations , 2014 .

[12]  G. Guo,et al.  Entanglement distribution in optical fibers assisted by nonlocal memory effects , 2014 .

[13]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[14]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[15]  Wojciech H. Zurek,et al.  Redundant information from thermal illumination: quantum Darwinism in scattered photons , 2011, 1102.3179.

[16]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[17]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[18]  J. Paz,et al.  Redundancy of classical and quantum correlations during decoherence , 2009, 0909.0474.

[19]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[20]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[21]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.

[22]  C Jess Riedel,et al.  Quantum Darwinism in an everyday environment: huge redundancy in scattered photons. , 2010, Physical review letters.

[23]  Quantum Darwinism in quantum Brownian motion. , 2007, Physical review letters.

[24]  B. R. Bennett,et al.  Periodic scarred States in open quantum dots as evidence of quantum Darwinism. , 2010, Physical review letters.

[25]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[26]  P Horodecki,et al.  Objectivity in a noisy photonic environment through quantum state information broadcasting. , 2014, Physical review letters.

[27]  R. Zambrini,et al.  Energy and information propagation in a finite coupled bosonic heat bath , 2014, 1409.4281.

[28]  G. Guo,et al.  Nonlocal memory assisted entanglement distribution in optical fibers , 2014, 1401.5091.

[29]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[30]  P. Horodecki,et al.  D ec 2 01 3 Objectivity From Quanta Via State Information Broadcasting , 2013 .

[31]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[32]  S. Olivares,et al.  Continuous-variable quantum key distribution in non-Markovian channels , 2010, 1011.0304.

[33]  Michael Zwolak,et al.  Amplification, redundancy, and quantum Chernoff information. , 2013, Physical review letters.

[34]  Jyrki Piilo,et al.  Nonlocal memory effects allow perfect teleportation with mixed states , 2012, Scientific Reports.

[35]  Habib,et al.  Reduction of the wave packet: Preferred observable and decoherence time scale. , 1993, Physical review. D, Particles and fields.

[36]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.