Practical considerations on optimising multistage decimation and interpolation processes

Multistage filter design is a complex multidimensional optimisation problem. The formulae for optimal design generally yield non-integer real numbers for the sample-rate-changing factors of multiple stages. Approaches yielding useful integer results have high computational cost and do not consider important multistage filter design properties. We have developed a simplified algorithm for directly searching the optimal integer results. Considering the most useful practical design parameters, optimal results can be approximated with a limited number of sets for any designs satisfying certain constraints, with negligible costs. This vastly simplifies the complexity of the problem.

[1]  Qiang Zhang,et al.  A Novel Hybrid Monotonic Local Search Algorithm for FIR Filter Coefficients Optimization , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Tapio Saramäki,et al.  A systematic technique for optimizing one-stage two-filter linear-phase FIR filters for sampling rate conversion , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[3]  Mark W. Coffey,et al.  Optimizing Multistage Decimation and Interpolation Processing—Part II , 2007, IEEE Signal Processing Letters.

[4]  Der-Feng Huang,et al.  The Optimum Design of Multistage Multirate FIR Filter for Audio Signal Sampling Rate Conversion via a Genetic Algorithm Approach , 2009, 2009 2nd International Congress on Image and Signal Processing.

[5]  G. Temes Delta-sigma data converters , 1994 .

[6]  M.G. Shayesteh,et al.  Optimum Structures for Sample Rate Conversion from CD to DAT and DAT to CD Using Multistage Interpolation and Decimation , 2006, 2006 IEEE International Symposium on Signal Processing and Information Technology.

[7]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[8]  Lawrence R. Ubiner Optimum FIR Digital Filter Implementations for Decimation, Interpolation, and Narrow-Band Filtering , 1975 .

[9]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[10]  Meihui Zhang,et al.  Dual-channel multiplexing technology and its realization in interpolation filter in stereo audio sigma-delta DAC , 2014 .

[11]  Walt Kester,et al.  Mixed-signal and DSP Design Techniques Analog Devices, Inc. , 2002 .

[12]  T. Saramaki,et al.  A class of linear-phase FIR filters for decimation, interpolation, and narrow-band filtering , 1984 .

[13]  Oscar Gustafsson,et al.  Bit-level optimized FIR filter architectures for high-speed decimation applications , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[14]  Yonghao Wang,et al.  Time Domain Performance of Decimation Filter Architectures for High Resolution Sigma Delta Analogue to Digital Conversion , 2012 .

[15]  Der-Feng Huang,et al.  The direct integer factorization approach to the Crochiere and Rabiner multistage FIR designs for multirate systems , 2003, 3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the.

[16]  L.R. Rabiner,et al.  Interpolation and decimation of digital signals—A tutorial review , 1981, Proceedings of the IEEE.

[17]  Paul Lesso,et al.  An Ultra High Performance DAC with Controlled Time-Domain Response , 2005 .

[18]  Peter Graham Craven Antialias Filters and System Transient Response at High Sample Rates , 2004 .

[19]  M. Coffey,et al.  Optimizing multistage decimation and interpolation processing , 2003, IEEE Signal Processing Letters.

[20]  Walt Kester,et al.  A Brief History of Data Conversion: A Tale of Nozzles, Relays, Tubes, Transistors, and CMOS , 2015, IEEE Solid-State Circuits Magazine.