Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors

In this work, we compare the photodetector performance of single nearly defect-free undoped and n-i-n GaN nanowires (NWs). Undoped NWs present a dark current three orders of magnitude lower than n-i-n structures, about ten times lower gain, and a strong dependence of the measurement environment. In vacuum, undoped NWs react with an increase of their responsivity, accompanied by stronger nonlinearities and persistent photoconductivity effects. This behavior is attributed to the unpinned Fermi level at the m-plane NW sidewalls, which enhances the role of surface states in the photodetection dynamics. In the air, adsorbed oxygen accelerates the carrier dynamics at the price of reducing the photoresponse. In contrast, in n-i-n NWs, the Fermi level pinning at the contact regions limits the photoinduced sweep of the surface band bending, hence reducing the environment sensitivity and preventing persistent effects even in vacuum.

[1]  E. Monroy,et al.  Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. , 2012, Nano letters.

[2]  J. Ristić,et al.  Oxygen photo-adsorption related quenching of photoluminescence in group-III nitride nanocolumns. , 2012 .

[3]  Husnu Emrah Unalan,et al.  Nanowires for energy generation , 2012, Nanotechnology.

[4]  A. Motayed,et al.  Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors , 2012, Nanotechnology.

[5]  M. Manfra,et al.  Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. , 2012, Acta biomaterialia.

[6]  E. Monroy,et al.  Room-temperature photodetection dynamics of single GaN nanowires. , 2012, Nano letters.

[7]  G. Yi Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications , 2012 .

[8]  Kuei-Hsien Chen,et al.  Recent Advances in GaN Nanowires: Surface-Controlled Conduction and Sensing Applications , 2012 .

[9]  O. Brandt,et al.  Surface-induced effects in GaN nanowires , 2011 .

[10]  A. Davydov,et al.  GaN Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  E. Monroy,et al.  Si-interdiffusion in heavily doped AlN-GaN-based quantum well intersubband photodetectors , 2011 .

[12]  Oliver Brandt,et al.  Unpinning the Fermi level of GaN nanowires by ultraviolet radiation , 2010 .

[13]  E. Monroy,et al.  Quantum transport in GaN/AlN double-barrier heterostructure nanowires. , 2010, Nano letters.

[14]  Steven M. George,et al.  Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy , 2010 .

[15]  Chun-Yang Lu,et al.  Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires , 2009 .

[16]  Rainer G. Ulbrich,et al.  Atomic and electronic structure of the nonpolar GaN ( 1 1 ¯ 00 ) surface , 2009 .

[17]  A. Waag,et al.  Photoluminescence from ZnO nanowires , 2009 .

[18]  D. J. Carter,et al.  Atomic and electronic structure of single and multiple vacancies in GaN nanowires from first-principles , 2009 .

[19]  A. A. Baski,et al.  Photoadsorption and photodesorption for GaN , 2009 .

[20]  George T. Wang,et al.  Depletion-Mode Photoconductivity Study of Deep Levels in GaN Nanowires , 2009 .

[21]  M. Marso,et al.  Doping concentration of GaN nanowires determined by opto-electrical measurements. , 2008, Nano letters.

[22]  B. Daudin,et al.  From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer , 2007 .

[23]  Kuei-Hsien Chen,et al.  Ultrahigh photocurrent gain in m-axial GaN nanowires , 2007 .

[24]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[25]  L. Lauhon,et al.  Space-charge-limited current in nanowires depleted by oxygen adsorption , 2006 .

[26]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[27]  H. Lüth,et al.  Defect distribution along single GaN nanowhiskers. , 2006, Nano letters.

[28]  Brian A. Korgel,et al.  Space charge limited currents and trap concentrations in GaAs nanowires , 2006 .

[29]  Ian H. Stevenson,et al.  Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles , 2006 .

[30]  Hadis Morkoç,et al.  Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy , 2006 .

[31]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[32]  R. Davis,et al.  Preparation and characterization of atomically clean, stoichiometric surfaces of n- and p-type GaN(0001) , 2003 .

[33]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .

[34]  Umesh K. Mishra,et al.  Surface Potential at as‐Grown GaN(0001) MBE Layers , 2002 .

[35]  C. Frenzen,et al.  Depletion lengths in semiconductor nanostructures , 2002 .

[36]  D. J. Somerford,et al.  Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si(111) by molecular-beam epitaxy , 1998 .

[37]  M. Lampert,et al.  Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps , 1956 .